Window Subsequence Matching

Window Subsequence Problems for Compressed Texts

Patrick Cégielski ${ }^{1}$, Irène Guessarian², Yury Lifshits ${ }^{3}$ and Yuri Matiyasevich ${ }^{3}$
${ }^{1}$ Université Paris 12, cegielski@univ-paris12.fr
${ }^{2}$ LIAFA and Université Paris 6, ig@liafa.jassieu.fr
${ }^{3}$ Steklov Institute of Mathematics at St.Petersburg,
yura@logic.pdmi.ras.ru, yumat@pdmi.ras.ru
St.Petersburg
11/06/2006

Window Problems for Compressed Texts

Outline of the Talk

- New topic in computer science: algorithms for compressed texts
- Our problem and our result
- Sketch of the algorithm

Straight-line Programs: Definition

Example

Straight-line program (SLP) is a
Context-free grammar generating exactly one string Two types of productions:
$X_{i} \rightarrow a$ and $X_{i} \rightarrow X_{p} X_{q}$
abaababaabaab

$$
X_{1} \rightarrow b
$$

$X_{2} \rightarrow a$
$X_{3} \rightarrow X_{2} X_{1}$
$X_{4} \rightarrow X_{3} X_{2}$
$X_{5} \rightarrow X_{4} X_{3}$
$X_{6} \rightarrow X_{5} X_{4}$
$X_{7} \rightarrow X_{6} X_{5}$

INPUT:

Pattern: CES
Window size: 10
TASK: to find substrings of the length at most 10 in the text that contains CES as a subsequence

OUTPUT:

C|O|M|P|U|T|E|R| $|\mathbf{S | C | I | I E | N | C | E | | | | N | ~}|$ R|U|S|S|||A
Problem for this talk:

How given a COMPRESSED text to solve window subsequence matching faster than just "unpack-and-search"?

Part I

What are compressed texts?

Can we do something interesting without unpacking?

SLP $=$ Compressed Text

Fact [Rytter, 2003]: given the archive of the text T compressed by LZ78,LZW or some dictionary-based method of original length n and the size of archive z we can in time $O(z)$ convert it to SLP of size $O(z)$ generating the same text.

Fact [Rytter, 2003]: given the LZ77-compressed or RLE-compressed text T of original length n and the size of archive z we can in time $O(z \log n)$ convert it to SLP of the size $O(z \log n)$ generating the same text.

Further by compressed text we mean an SLP generating it

Why algorithms on compressed texts?

Answer for algorithms people:

- Might be faster than "unpack-and-search"
- Saving storing space and transmitting costs
- Many fields with highly compressible data: statistics (internet log files), automatically generated texts, massage sequence charts for parallel programs

Answer for complexity people:

- Some problems are hard in worst case. But they might be easy for compressible inputs
- New complexity relations. Similar problems becomes different

\exists poly algorithms:	At least NP-hard:	
GKPR'96 Equivalence	L'06 Hamming distance	Part II
GKPR'96 Fully Compressed	LL'06 Fully Compressed	
Pattern Matching	Subsequence Problem	
GKPR'96 Regular Language	Lohrey'04 Context-Free	Our Problem and Our Result
Membership	Language Membership	
GKPR'96 Shortest Period	LL'06 Longest Common Subsequence	
L'06 Shortest Cover	BKLPR'06 Two-dimensional	
L'06 Fingerprint Table	Compressed Pattern Matching	

Window Subsequence Problems

Definition: w-window $=$ substring of the length w
Definition: minimal window $=$ substring containing the pattern, but any substring of which does not contain the pattern

INPUT: SLP generating text T, pattern P, window size w

Computational tasks:

(1) To decide whether pattern P is a subsequence of text T
(2) To compute the number of minimal windows of T containing P
(3) To compute the number of w-windows of T containing P

Our Algorithm

Main result:

Given a straight-line program of size m, a pattern of length k and an integer k we can solve all window subsequence problems on SLP-generated text in time $O\left(m k^{2} \log k\right)$

Our Small Plan

- Define auxiliary data structures
- Compute them
- Derive answers for our tasks from these structures

Window Subsequences: Motivation

Why do we do window subsequence matching (in compressed texts)?

- Variation of approximate pattern matching
- Useful for finding access patterns in databases
- Virus search in archives
- Pattern discovery in bioinformatics
- New step in the framework "what problems could be solved without unpacking?'

Part III

Algorithm for Window Problems on Compressed Texts

Auxiliary Arrays

Let X_{1}, \ldots, X_{m} be the nonterminals of SLP generating T, while P_{1}, \ldots, P_{l} be all different substrings of pattern P

Left inclusions

For every X_{i} and every P_{j} let us define $L(i, j)$ as the length of the minimal prefix of X_{i} that contains P_{j}, in case of no such prefix exists let $L(i, j):=\infty$

Right inclusions
For every X_{i} and every P_{j} let us define $R(i, j)$ as the length of the minimal suffix of X_{i} that contains P_{j}, in case of no such prefix exists let $R(i, j):=\infty$

Auxiliary Arrays II

Minimal windows

$M(i)=$ number of minimal windows containing P in X_{i}

Fixed windows

$F(i)=$ number of w-windows containing P in X_{i}

Computing Minimal Windows

We compute $M(i)$ by induction on i and using already computed right/left inclusions:

Base: if $X_{i} \rightarrow a$, then $M(i)=0$ only except
$P=a$, in the latter case $M(i)=1$
Inductive step: $X_{i} \rightarrow X_{p} X_{q}$.
$M(i)=M(p)+M(q)+$???

Computing boundary minimal windows

\diamond Consequently consider decompositions $P=P_{u} P_{v}$
\diamond For every decomposition with the help of L / R inclusions info
\diamond find the unique minimal window such that
$\diamond P_{u}$ is falling in X_{p} and P_{v} is falling X_{q}
\diamond If this window is shifted, then we increment the counter
Complexity: $O(m k)$

Summary

Main points:

- Compressed text $=$ text generated by SLP
- Given SLP we can solve window subsequence matching in time $O\left(m k^{2} \log k\right)$
- Method: dynamic programming over SLP

Open Problems:

- Decrease the k-depended factor in complexity
- To construct $O(n m)$ algorithms for edit distance, where n is the length of T_{1} and m is the compressed size of T_{2}

Computing Left Inclusions

We compute $L(i, j)$ by induction on i
Base: if $X_{i} \rightarrow a$, then $L(i, j)=\infty$ for all $P_{j} \neq a$,
and $L(i, j)=1$ in case $P_{j}=a$
Induction step: let $X_{i} \rightarrow X_{p} X_{q}$
If $L(p, j) \neq \infty$, then $L(i, j)=L(p, j)$. Assume $L(p, j)=\infty$.
If we find a decomposition $P_{j}=P_{u} P_{v}$ with minimal
$\left|P_{v}\right|$ where $L(p, u) \neq \infty$ and $L(q, v) \neq \infty$,
then we immediately get $L(i, j)=\left|X_{p}\right|+L(q, v)$
Such a decomposition can be found by a binary search
Total complexity $O\left(m k^{2} \log k\right)$
where m is the size of SLP and k is the length of the pattern
Mikhail Dvorkin: $O\left(m k^{2}\right)$

Deriving the Answer

Computational tasks:

- To decide whether P is a subsequence of T

$$
\text { - Answer: "yes" iff } M(m) \neq 0
$$

- To compute the number of w-windows of T containing P
- Answer: $F(m)$
- To compute the number of minimal windows of T containing P
- Answer: $M(m)$

Complexity: $O\left(m k^{2} \log k\right)$.

Last Slide

Yury Lifshits http://logic.pdmi.ras.ru/~yura/
Relevant papers:
R Yu. Lifshits
Solving Classical String Problems on Compressed Texts
Pu. Lifshits and M. Lohrey
Querying and Embedding Compressed Texts
P. Cégielski, I. Guessarian, Yu. Lifshits and Yu. Matiyasevich Window Subsequence Problems for Compressed Texts
L.Boasson, P. Cégielski, I. Guessarian, and Yu. Matiyasevic Window-Accumulated Subsequence Matching Problem is Linear

- P. Cégielski, I. Guessarian, and Yu. Matiyasevich

Multiple Serial Episode Matching
Thanks for attention!

