Estimation of the Click Volume by Large Scale Regression Analysis

Yury Lifshits^{1,2} and Dirk Nowotka³

¹Steklov Institute of Mathematics at St.Petersburg, ²California Institute of Technology, ³University of Stuttgart

Fast web-scale algorithms for machine learning

Fast web-scale algorithms for machine learning

Least Squares: Find α minimizing $\|\alpha M - y\|_2$

Fast web-scale algorithms for machine learning

Least Squares: Find α minimizing $\|\alpha M - y\|_2$

Assume *M* has $k \ll mn$ nonzero elements Can we solve least squares in O(k) time?

Fast web-scale algorithms for machine learning

Least Squares: Find α minimizing $\|\alpha M - y\|_2$

Assume *M* has $k \ll mn$ nonzero elements Can we solve least squares in O(k) time?

Our contribution:

- Solving least squares on sparse matrices
- Application to on-line advertisement

Part I

Fast Algorithm for Solving Least Squares on Sparse Matrices

Y. Lifshits, D. Nowotka

Estimation of Click Volume

CSR 2007 3 / 20

Geometric View on Least Squares

Find α minimizing $\|\alpha M - y\|_2$

Let V be a linear hull of M's rows T_1, \ldots, T_m

Geometric View on Least Squares

Find α minimizing $\|\alpha M - y\|_2$

Let V be a linear hull of M's rows T_1, \ldots, T_m

Interpretation: every vector α represents coordinates of αM point in V in T_1, \ldots, T_m basis

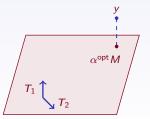
Geometric View on Least Squares

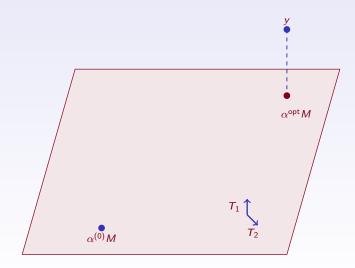
Find α minimizing $\|\alpha M - y\|_2$

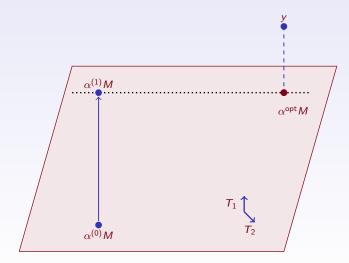
Let V be a linear hull of M's rows T_1, \ldots, T_m

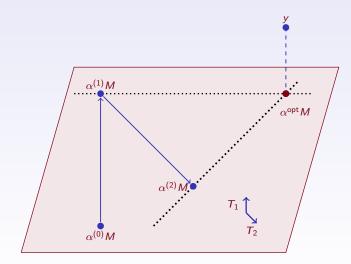
Interpretation: every vector α represents coordinates of αM point in V in T_1, \ldots, T_m basis

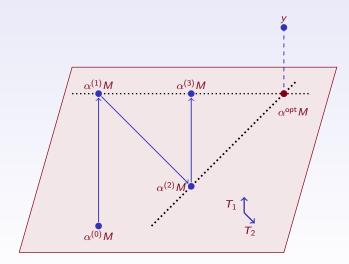
Thus $\alpha^{\text{opt}} M$ is just the projection of y to V

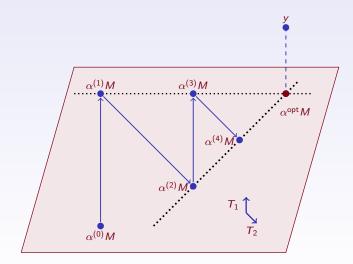












Componentwise Iterations: Algorithm

Auxiliary data structures:

Matrix columns: T_1, \ldots, T_m , precomputed norms $||T_j||$ Current solution $\alpha^{(k)}$

Error vector for current prediction $\gamma^{(k)} = y - \alpha^{(k)} M$

Componentwise Iterations: Algorithm

Auxiliary data structures:

Matrix columns: T_1, \ldots, T_m , precomputed norms $||T_j||$ Current solution $\alpha^{(k)}$

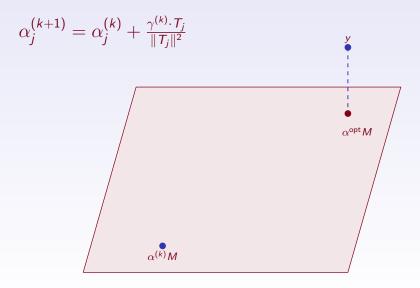
Error vector for current prediction $\gamma^{(k)} = y - \alpha^{(k)} M$

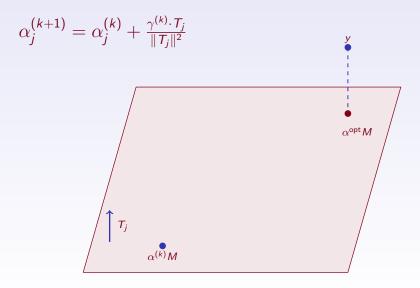
Componentwise iterations:

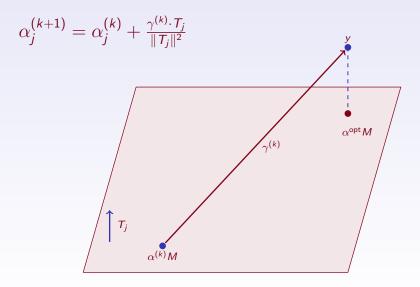
• Start with random
$$\alpha^{(0)}$$

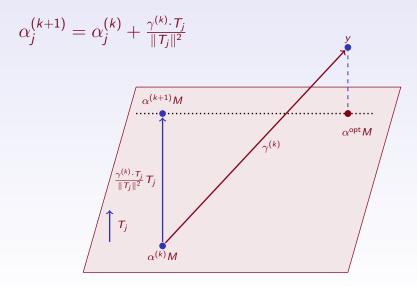
Ochoose some coordinate j. Update formulae:

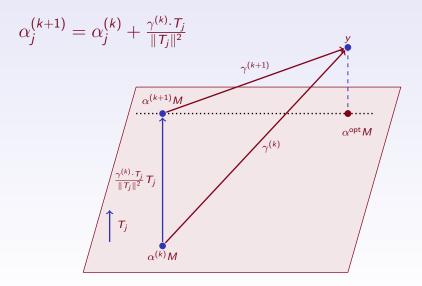
$$\alpha_j^{(k+1)} = \alpha_j^{(k)} + \frac{\gamma^{(k)} \cdot T_j}{\|T_j\|^2}$$
$$\gamma^{(k+1)} = \gamma^{(k)} - \frac{\gamma^{(k)} \cdot T_j}{\|T_j\|^2} T_j$$











Convergence Theorem

Theorem (Convergence theorem) $\alpha^{(k)}$ converges to $\alpha^{opt} = (M \cdot M^T)^{-1}M^T y$ for any infinite order of updates containing every j infinitely many times

Convergence Theorem

Theorem (Convergence theorem) $\alpha^{(k)}$ converges to $\alpha^{opt} = (M \cdot M^T)^{-1}M^T y$ for any infinite order of updates containing every j infinitely many times

Open Problem: prove some upper bounds on convergence speed

Complexity of One Global Round

Global Round:

Sequentially do one update for every j from 1 to m

Theorem

Componentwise Iterations algorithm uses only $\mathcal{O}(k)$ time for global round of updates. Recall, k is the number of nonzero entries in M.

Algorithm: Discussion

- A vector α^(k) can be safely updated in two components j₁ and j₂ in parallel if we have T_{j1} ⊥ T_{j2}
- In the case of orthogonal vectors T_1, \ldots, T_m one global round is sufficient for reaching α^{opt}
- Joint optimal update of k components requires inverting k × k matrix

Part II

Application to On-line Advertisements

Y. Lifshits, D. Nowotka

Estimation of Click Volume

CSR 2007 11 / 20

On-line Ads: Terminology

Opportunity: all available information about ad request to advertising system. E.g. website, search query, user id, ...

On-line Ads: Terminology

Opportunity: all available information about ad request to advertising system. E.g. website, search query, user id, ...

Click-through rate CTR(a, o): a probability of clicking ad *a* at opportunity *o*

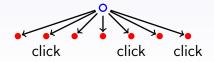
On-line Ads: Terminology

Opportunity: all available information about ad request to advertising system. E.g. website, search query, user id, ...

Click-through rate CTR(a, o): a probability of clicking ad *a* at opportunity *o*

Click volume for collection *O* of all opportunities for some time interval: $CV(a) = \sum_{o \in O} CTR(a, o)$

The same ad to all ad requests



• Measuring effectiveness of advertising system by a ration between sold clicks and click volume

- Measuring effectiveness of advertising system by a ration between sold clicks and click volume
- Measuring preciseness of targeting by ration between click volume in target group and overall click volume

- Measuring effectiveness of advertising system by a ration between sold clicks and click volume
- Measuring preciseness of targeting by ration between click volume in target group and overall click volume
- Defining coverage/agressiveness tradeoff: How many users should we contact in order to get a given fraction of click volume?

- Measuring effectiveness of advertising system by a ration between sold clicks and click volume
- Measuring preciseness of targeting by ration between click volume in target group and overall click volume
- Defining coverage/agressiveness tradeoff: How many users should we contact in order to get a given fraction of click volume?
- Helpful for setting prices for on-line ads

Estimation of Click Volume: Methodology

- Indexing: mapping advertising system logs to well-defined data structure
- Regression Analysis: deriving formula for click-through rate prediction
- Estimation: applying resulting formula to a given ad and monthly collection of opportunities

Indexing: History Table

Logs of advertising system:

Set of triples (a_i, o_i, b_i) : ad, opportunity, click

Indexing: History Table

Logs of advertising system:

Set of triples (a_i, o_i, b_i) : ad, opportunity, click

Events indexing:

Mapping a pair (a, o) to internal representation E(a, o)Techniques: clustering, dimensionality reduction

Indexing: History Table

Logs of advertising system:

Set of triples (a_i, o_i, b_i) : ad, opportunity, click

Events indexing:

Mapping a pair (a, o) to internal representation E(a, o)Techniques: clustering, dimensionality reduction

Resulting reduced table: Set of pairs (E_i, CTR_i)

Quick Recall: Regression Analysis

Input:

Training collection of n documents Document i: m-dimensional vector D_i and additional parameter y_i

Quick Recall: Regression Analysis

Input:

Training collection of n documents Document i: m-dimensional vector D_i and additional parameter y_i

Regression Problem:

Find function f such that $f(D_i) \approx y_i$

Quick Recall: Regression Analysis

Input:

Training collection of n documents Document i: m-dimensional vector D_i and additional parameter y_i

Regression Problem:

Find function f such that $f(D_i) \approx y_i$

Linear Regression Problem (least squares): find *m*-dimensional vector α such that the sum of squared prediction errors $\sum |\alpha D_i - y_i|^2$ is minimized

Click Volume via Regression

Building history table from logs of advertising system: matrix *M* = {*E*₁,..., *E_n*} and *CTR* vector

Click Volume via Regression

- Suilding history table from logs of advertising system: matrix $M = \{E_1, \ldots, E_n\}$ and *CTR* vector
- Solving least squares

Click Volume via Regression

- Suilding history table from logs of advertising system: matrix $M = \{E_1, \ldots, E_n\}$ and *CTR* vector
- Solving least squares
- Omputing click volume by formula:

$$CV(a_{\text{new}}) = \sum_{1 \le i \le n} \alpha \cdot E(a_{\text{new}}, o_i)$$

Directions for Further Work

Theoretic problems:

- Prove upper bounds for speed of convergence of our algorithm
- Can we compute click volume for all ads in the system faster than doing it separately for every ad?

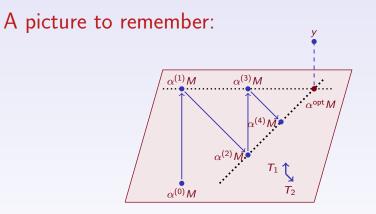
Directions for Further Work

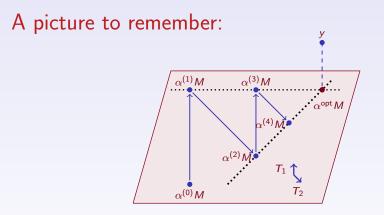
Theoretic problems:

- Prove upper bounds for speed of convergence of our algorithm
- Can we compute click volume for all ads in the system faster than doing it separately for every ad?

Experimental problems:

- Apply our algorithm for some real data set. Measure the empirical precision of *CTR* prediction
- Study effects of heuristical ingredients for algorithm: indexing, dimensionality reduction, update order





Thanks for your attention! Questions?

Yury Lifshitshttp://yury.nameDirk Nowotkagoogle://dirk nowotka

Some related work:

Y. Lifshits, D. Nowotka Estimation of the Click Volume by Large Scale Regression Analysis. CSR'07. http://yury.name/papers/lifshits2007click.pdf

B. Hoffmann, Y. Lifshits, D. Nowotka Maximal Intersection Queries in Randomized Graph Models. CSR'07. http://yury.name/papers/hoffmann2007maximal.pdf

N. Goyal, Y. Lifshits, H. Schütze Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search. Submitted. http://yury.name/papers/goyal2008disorder.pdf