Decidability of Parameterized Probabilistic Information Flow

Danièle Beauquier¹, Marie Duflot¹ and **Yury Lifshits**^{2,3}

 1 Université Paris 12 2 Steklov Institute of Mathematics at St.Petersburg 3 California Institute of Technology

CSR 2007

D. Beauquier, M. Duflot, Y. Lifshits

Decidability of Information Flow

SR 2007 1 /

D Beauguier M Duflot V Lifshits

Decidability of Information Flow

CSR 2007 2 / 19

Outline

- Information Flow: Definitions
 - System
 - Observation
 - System Properties
 - Definition of Information Flow
- Decidability Results

- Assume we have a **system**
- And somebody observes a part of its behavior
- We fix some **property** of the system

Can the observer recover that property?

Our result: there is an algorithm answering the above question given any system and property

Part I

What is a system?

What is a partial observation of its behavior?

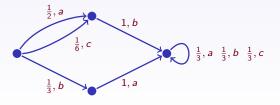
What is a property of the system?

When does a system have information flow?

. Beauquier, M. Duflot, Y. Lifshits Decidability of Information Flow CSR 2007 3 / 19 D. Beauquier, M. Duflot, Y. Lifshits Decidability of Information Flow CSR 2007 4 / 3

System is a Probability Distribution

- A system is a probability distribution over traces
- A trace is a finite or infinite sequence of alphabet characters
- Today: $\Sigma = L \cup H$ (low-level and high-level events)
- The distribution is described by **Finite Markov Automaton**

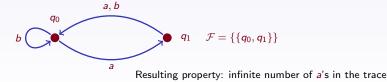

Observation model

For any trace α observation is a projection to low-level events $\alpha|_{L}$

Projection is just deleting all characters from H from the sequence

Finite Markov Automaton

- Finite number of states
- Edges are labelled by alphabet characters
- Every edge has a probability
- For every edge the sum of probabilities over all outgoing edges is equal to 1


Defining a System Property

We describe any property on traces by recognizing **automaton**: property holds ⇔ automaton accepts

Today we restrict ourselves to properties recognized by Muller automaton

Muller Automaton

- Finite number of states
- Initial state, family \mathcal{F} of "accepting" sets of states
- Every edge is labelled by alphabet character
- The automaton is complete and deterministic: for every pair (v, a) there exist a unique outgoing edge from the vertex vwith that label a
- Muller automaton accepts trace if during "reading" it the set of states visited infinitely many times belongs to \mathcal{F}

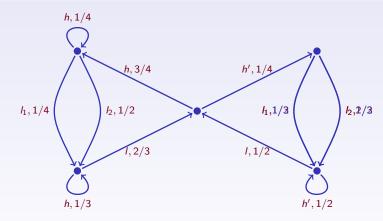
General Information Flow

A system is without information flow iff it has no flow for every (defined by Muller automaton) property P

We call property to be sequential iff it's Muller automaton treats every low-level event in precisely the same way

A system is without sequential information flow iff it has no flow for every sequential property P

Property-Specific Information Flow


 $\mathcal{P}r_{S}(P)$ denotes the probability measure of the set of all traces from S satisfying P

The conditional probability $\mathcal{P}r_S(P|u)$ denotes the probability measure of the set of all traces which S satisfy P and whose projection to L is starting from u

System S has **no information flow for property** P if

$$\forall u \ \mathcal{P}r_{\mathcal{S}}(P|u) = \mathcal{P}r_{\mathcal{S}}(P)$$

Information Flow: Example

The Markov chain above has no sequential information flow Now the Markov chain above has sequential information flow

Part II

Given system/property can we determine the existence of information flow?

D. Beauguier, M. Duflot, Y. Lifshits

Decidability of Information Flow

SR 2007 13 / 1

Algorithm Inside (1/2)

We reduce property-specific information flow to the following mathematical problem:

Input: vectors a, c, matrices M_1, \ldots, M_n

Question: does there exist a finite sequence of indices such that $aM_{i_1} \dots M_{i_k} c \neq 0$?

Deciding Property-Specific Information Flow

Theorem

There is an algorithm deciding property-specific information flow for every pair of system/property (i.e. for pair of Muller automaton and Markov chain)

Reduction to linear algebra:

- Compute a composition of Markov automaton and Buchi automaton
- ② Simplify it by the rule " $H^*I \rightarrow I$ "

D. Beauquier, M. Duflot, Y. Lifshits

Decidability of Information Flow

CSR 2007 14 /

Algorithm Inside (2/2)

For every k we will compute basis for linear hull of $V_k = \{aM_{i_1} \dots M_{i_k}\} \cup V_{k-1}$

- \bigcirc a is a basis for V_0
- ② In order to get basis for V_{k+1} from V_k we multiply all basis vectors by all matrices and keep the maximal linearly independent subset
- **3** Stopping condition: $dim(V_{k+1}) = dim(V_k)$
- Check whether $V_k \perp c$

D. Beauquier, M. Duflot, Y. Lifshits

Decidability of Information Flow

CSR 200

D. Beauquier, M. Duflot, Y. Lifsh

Decidability of Information Flow

CSR 2007

Deciding General Information Flow

Theorem

There is an algorithm deciding general information flow for every system described by a Markov chain

Theorem

There is an algorithm deciding sequential information flow for every system described by a Markov chain

D. Beauguier, M. Duflot, Y. Lifshits

Decidability of Information Flow

SR 2007

17 / 19

Danièle Beauquier http://www.univ-paris12.fr/lacl/beauquier/

Marie Duflot http://www.univ-paris12.fr/lacl/duflot/

Yury Lifshits http://yury.name

Some related work:

D. Beauquier, M. Duflot, Y. Lifshits
Decidability of Parameterized Probabi

Decidability of Parameterized Probabilistic Information Flow. CSR'07. http://yury.name/papers/beauquier2007decidability.pdf

D. Beauquier, M. Duflot, M. Minea
A Probabilistic Property-Specific Approach to Information Flow. MMM-ACNS'05.
http://www.univ-paris12.fr/lacl/Rapports/publications/TR-2005-02.pdf

A. Slissenko

Complexity problems in the analysis of information systems security. MMM=ACNS'03. http://www.springerlink.com/index/WKDENHGBAFE28KNC.pdf

D Beauguier M Duflot V Lifshits

Decidability of Information Flow

CSR 2007

19 / 19

Highlights

- System is a Markov probability distribution over traces
- Property is described by Muller automaton
- We can determine the existence of information flow by linear algebra tricks

Future work

- More general models for systems and properties
- Quantitative measure for information flow

Thanks for your attention! Questions?

D. Beauguier, M. Duflot, Y. Lifshits

Decidability of Information Flow

CCD 2007 10