Decidability of Parameterized Probabilistic Information Flow

Danièle Beauquier ${ }^{1}$, Marie Duflot ${ }^{1}$ and Yury Lifshits ${ }^{2,3}$

${ }^{1}$ Université Paris 12
${ }^{2}$ Steklov Institute of Mathematics at St.Petersburg
${ }^{3}$ California Institute of Technology

CSR 2007

- Assume we have a system
- And somebody observes a part of its behavior
- We fix some property of the system
- Assume we have a system
- And somebody observes a part of its behavior
- We fix some property of the system

Can the observer recover that property?

- Assume we have a system
- And somebody observes a part of its behavior
- We fix some property of the system

Can the observer recover that property?

Our result: there is an algorithm answering the above question given any system and property

Outline

(1) Information Flow: Definitions

- System
- Observation
- System Properties
- Definition of Information Flow

Outline

(1) Information Flow: Definitions

- System
- Observation
- System Properties
- Definition of Information Flow
(2) Decidability Results

Part I

What is a system?

What is a partial observation of its behavior?

What is a property of the system?

When does a system have information flow?

System is a Probability Distribution

- A system is a probability distribution over traces
- A trace is a finite or infinite sequence of alphabet characters
- Today: $\Sigma=L \cup H$ (low-level and high-level events)
- The distribution is described by Finite Markov Automaton

Finite Markov Automaton

- Finite number of states
- Edges are labelled by alphabet characters
- Every edge has a probability
- For every edge the sum of probabilities over all outgoing edges is equal to 1

Observation model

For any trace α observation is a projection to low-level events $\left.\alpha\right|_{L}$

Projection is just deleting all characters from H from the sequence

Defining a System Property

We describe any property on traces by recognizing automaton: property holds \Leftrightarrow automaton accepts

Defining a System Property

We describe any property on traces by recognizing automaton: property holds \Leftrightarrow automaton accepts

Today we restrict ourselves to properties recognized by Muller automaton

Muller Automaton

- Finite number of states
- Initial state, family \mathcal{F} of "accepting" sets of states
- Every edge is labelled by alphabet character
- The automaton is complete and deterministic: for every pair (v, a) there exist a unique outgoing edge from the vertex v with that label a
- Muller automaton accepts trace if during "reading" it the set of states visited infinitely many times belongs to \mathcal{F}

Property-Specific Information Flow

$\operatorname{Pr}_{S}(P)$ denotes the probability measure of the set of all traces from S satisfying P

Property-Specific Information Flow

$P_{r S}(P)$ denotes the probability measure of the set of all traces from S satisfying P

The conditional probability $\operatorname{Pr}_{S}(P \mid u)$ denotes the probability measure of the set of all traces which S satisfy P and whose projection to L is starting from u

Property-Specific Information Flow

$P_{r S}(P)$ denotes the probability measure of the set of all traces from S satisfying P

The conditional probability $P_{r S}(P \mid u)$ denotes the probability measure of the set of all traces which S satisfy P and whose projection to L is starting from u

System S has no information flow for property P if

$$
\forall u \quad \operatorname{Pr}_{S}(P \mid u)=\operatorname{Pr}_{r_{S}}(P)
$$

General Information Flow

A system is without information flow iff it has no flow for every (defined by Muller automaton) property P

General Information Flow

A system is without information flow iff it has no flow for every (defined by Muller automaton) property P

We call property to be sequential iff it's Muller automaton treats every low-level event in precisely the same way

General Information Flow

A system is without information flow iff it has no flow for every (defined by Muller automaton) property P

We call property to be sequential iff it's Muller automaton treats every low-level event in precisely the same way

A system is without sequential information flow iff it has no flow for every sequential property P

Information Flow: Example

The Markov chain above has no sequential information flow

Information Flow: Example

Now the Markov chain above has sequential information flow

Part II

Given system/property can we determine the existence of information flow?

Deciding Property-Specific Information Flow

Theorem

There is an algorithm deciding property-specific information flow for every pair of
system/property (i.e. for pair of Muller automaton and Markov chain)

Deciding Property-Specific Information Flow

Theorem

There is an algorithm deciding property-specific information flow for every pair of
system/property (i.e. for pair of Muller automaton and Markov chain)

Reduction to linear algebra:
(1) Compute a composition of Markov automaton and Buc̈hi automaton

Deciding Property-Specific Information Flow

Theorem

There is an algorithm deciding property-specific information flow for every pair of
system/property (i.e. for pair of Muller automaton and Markov chain)

Reduction to linear algebra:
(1) Compute a composition of Markov automaton and Buc̈hi automaton
(2) Simplify it by the rule " $H^{*} I \rightarrow I$ "

Algorithm Inside (1/2)

We reduce property-specific information flow to the following mathematical problem:

Input: vectors a, c, matrices M_{1}, \ldots, M_{n}
Question: does there exist a finite sequence of indices such that $a M_{i_{1}} \ldots M_{i_{k}} c \neq 0$?

Algorithm Inside (2/2)

For every k we will compute basis for linear hull of $V_{k}=\left\{a M_{i_{1}} \ldots M_{i_{k}}\right\} \cup V_{k-1}$

Algorithm Inside (2/2)

For every k we will compute basis for linear hull of $V_{k}=\left\{a M_{i_{1}} \ldots M_{i_{k}}\right\} \cup V_{k-1}$
(1) a is a basis for V_{0}

Algorithm Inside (2/2)

For every k we will compute basis for linear hull of $V_{k}=\left\{a M_{i_{1}} \ldots M_{i_{k}}\right\} \cup V_{k-1}$
(1) a is a basis for V_{0}
(2) In order to get basis for V_{k+1} from V_{k} we multiply all basis vectors by all matrices and keep the maximal linearly independent subset

Algorithm Inside (2/2)

For every k we will compute basis for linear hull of $V_{k}=\left\{a M_{i_{1}} \ldots M_{i_{k}}\right\} \cup V_{k-1}$
(1) a is a basis for V_{0}
(2) In order to get basis for V_{k+1} from V_{k} we multiply all basis vectors by all matrices and keep the maximal linearly independent subset
(3) Stopping condition: $\operatorname{dim}\left(V_{k+1}\right)=\operatorname{dim}\left(V_{k}\right)$

Algorithm Inside (2/2)

For every k we will compute basis for linear hull of $V_{k}=\left\{a M_{i_{1}} \ldots M_{i_{k}}\right\} \cup V_{k-1}$
(1) a is a basis for V_{0}
(2) In order to get basis for V_{k+1} from V_{k} we multiply all basis vectors by all matrices and keep the maximal linearly independent subset
(3) Stopping condition: $\operatorname{dim}\left(V_{k+1}\right)=\operatorname{dim}\left(V_{k}\right)$
(9) Check whether $V_{k} \perp c$

Deciding General Information Flow

Theorem
There is an algorithm deciding general information flow for every system described by a Markov chain

Theorem
There is an algorithm deciding sequential information flow for every system described by a Markov chain

Highlights

- System is a Markov probability distribution over traces

Highlights

- System is a Markov probability distribution over traces
- Property is described by Muller automaton

Highlights

- System is a Markov probability distribution over traces
- Property is described by Muller automaton
- We can determine the existence of information flow by linear algebra tricks

Highlights

- System is a Markov probability distribution over traces
- Property is described by Muller automaton
- We can determine the existence of information flow by linear algebra tricks

Highlights

- System is a Markov probability distribution over traces
- Property is described by Muller automaton
- We can determine the existence of information flow by linear algebra tricks

Future work

- More general models for systems and properties
- Quantitative measure for information flow

Highlights

- System is a Markov probability distribution over traces
- Property is described by Muller automaton
- We can determine the existence of information flow by linear algebra tricks

Future work

- More general models for systems and properties
- Quantitative measure for information flow

Thanks for your attention! Questions?

Danièle Beauquier

 Marie Duflot

 Marie Duflot

 http：／／www．univ－paris12．fr／lacl／duflot／

 http：／／www．univ－paris12．fr／lacl／duflot／
 Mury Lifshits http：／／yury．name

Some related work：

曷
D．Beauquier，M．Duflot，Y．Lifshits
Decidability of Parameterized Probabilistic Information Flow．CSR＇07．
http：／／yury．name／papers／beauquier2007decidability．pdf
茙
D．Beauquier，M．Duflot，M．Minea
A Probabilistic Property－Specific Approach to Information Flow．MMM－ACNS＇05． http：／／www．univ－paris12．fr／lacl／Rapports／publications／TR－2005－02．pdf

輷
A．Slissenko
Complexity problems in the analysis of information systems security．MMM＝ACNS＇03． http：／／www．springerlink．com／index／WKDENHGBAFE28KNC．pdf

