Decidability of Parameterized Probabilistic Information Flow

Danièle Beauquier¹, Marie Duflot¹ and Yury Lifshits^{2,3}

¹Université Paris 12 ²Steklov Institute of Mathematics at St.Petersburg ³California Institute of Technology

CSR 2007

D. Beauquier, M. Duflot, Y. Lifshits

Decidability of Information Flow

- Assume we have a system
- And somebody observes a part of its behavior
- We fix some **property** of the system

- Assume we have a **system**
- And somebody observes a part of its behavior
- We fix some **property** of the system

Can the observer recover that property?

- Assume we have a **system**
- And somebody observes a part of its behavior
- We fix some **property** of the system

Can the observer recover that property?

Our result: there is an algorithm answering the above question given any system and property

Outline

Information Flow: Definitions

- System
- Observation
- System Properties
- Definition of Information Flow

Outline

Information Flow: Definitions

- System
- Observation
- System Properties
- Definition of Information Flow

Part I

What is a system?

What is a partial observation of its behavior?

What is a property of the system?

When does a system have information flow?

System is a Probability Distribution

- A system is a probability distribution over traces
- A trace is a finite or infinite sequence of alphabet characters
- Today: $\Sigma = L \cup H$ (low-level and high-level events)
- The distribution is described by **Finite Markov Automaton**

Finite Markov Automaton

- Finite number of states
- Edges are labelled by alphabet characters
- Every edge has a probability
- For every edge the sum of probabilities over all outgoing edges is equal to 1

For any trace α observation is a projection to low-level events $\alpha|_L$

Projection is just deleting all characters from H from the sequence

Defining a System Property

We describe any property on traces by **recognizing automaton**: property holds \Leftrightarrow automaton accepts

Defining a System Property

We describe any property on traces by **recognizing automaton**: property holds \Leftrightarrow automaton accepts

Today we restrict ourselves to properties recognized by Muller automaton

Muller Automaton

- Finite number of states
- $\bullet\,$ Initial state, family ${\cal F}$ of "accepting" sets of states
- Every edge is labelled by alphabet character
- The automaton is complete and deterministic: for every pair (v, a) there exist a unique outgoing edge from the vertex v with that label a
- Muller automaton accepts trace if during "reading" it the set of states visited infinitely many times belongs to \mathcal{F}

Property-Specific Information Flow

 $Pr_S(P)$ denotes the probability measure of the set of all traces from S satisfying P

Property-Specific Information Flow

 $Pr_S(P)$ denotes the probability measure of the set of all traces from S satisfying P

The conditional probability $\mathcal{P}r_{S}(P|u)$ denotes the probability measure of the set of all traces which S satisfy P and whose projection to L is starting from u

Property-Specific Information Flow

 $Pr_S(P)$ denotes the probability measure of the set of all traces from S satisfying P

The conditional probability $\mathcal{P}r_{S}(P|u)$ denotes the probability measure of the set of all traces which S satisfy P and whose projection to L is starting from u

System S has no information flow for property P if

$$\forall u \quad \Pr_S(P|u) = \Pr_S(P)$$

General Information Flow

A system is without information flow iff it has no flow for every (defined by Muller automaton) property P

A system is without information flow iff it has no flow for every (defined by Muller automaton) property P

We call property to be sequential iff it's Muller automaton treats every low-level event in precisely the same way A system is without information flow iff it has no flow for every (defined by Muller automaton) property P

We call property to be sequential iff it's Muller automaton treats every low-level event in precisely the same way

A system is without sequential information flow iff it has no flow for every sequential property P

Information Flow: Example

The Markov chain above has no sequential information flow

D. Beauquier, M. Duflot, Y. Lifshits

Information Flow: Example

Now the Markov chain above has sequential information flow

Part II

Given system/property can we determine the existence of information flow?

Deciding Property-Specific Information Flow

Theorem

There is an algorithm deciding property-specific information flow for every pair of system/property (i.e. for pair of Muller automaton and Markov chain)

Deciding Property-Specific Information Flow

Theorem

There is an algorithm deciding property-specific information flow for every pair of system/property (i.e. for pair of Muller automaton and Markov chain)

Reduction to linear algebra:

Compute a composition of Markov automaton and Buchi automaton

Deciding Property-Specific Information Flow

Theorem

There is an algorithm deciding property-specific information flow for every pair of system/property (i.e. for pair of Muller automaton and Markov chain)

Reduction to linear algebra:

 Compute a composition of Markov automaton and Buchi automaton

2) Simplify it by the rule "
$$H^*I \rightarrow I$$
"

We reduce property-specific information flow to the following mathematical problem:

Input: vectors a, c, matrices M_1, \ldots, M_n

Question: does there exist a finite sequence of indices such that $aM_{i_1} \dots M_{i_k} c \neq 0$?

For every k we will compute basis for linear hull of $V_k = \{aM_{i_1} \dots M_{i_k}\} \cup V_{k-1}$

For every k we will compute basis for linear hull of $V_k = \{aM_{i_1} \dots M_{i_k}\} \cup V_{k-1}$

• a is a basis for V_0

For every k we will compute basis for linear hull of $V_k = \{aM_{i_1} \dots M_{i_k}\} \cup V_{k-1}$

- a is a basis for V_0
- In order to get basis for V_{k+1} from V_k we multiply all basis vectors by all matrices and keep the maximal linearly independent subset

For every k we will compute basis for linear hull of $V_k = \{aM_{i_1} \dots M_{i_k}\} \cup V_{k-1}$

- a is a basis for V_0
- In order to get basis for V_{k+1} from V_k we multiply all basis vectors by all matrices and keep the maximal linearly independent subset
- Stopping condition: $\dim(V_{k+1}) = \dim(V_k)$

For every k we will compute basis for linear hull of $V_k = \{aM_{i_1} \dots M_{i_k}\} \cup V_{k-1}$

- a is a basis for V_0
- In order to get basis for V_{k+1} from V_k we multiply all basis vectors by all matrices and keep the maximal linearly independent subset
- Stopping condition: $\dim(V_{k+1}) = \dim(V_k)$

• Check whether $V_k \perp c$

Deciding General Information Flow

Theorem

There is an algorithm deciding general information flow for every system described by a Markov chain

Theorem

There is an algorithm deciding sequential information flow for every system described by a Markov chain

• System is a Markov probability distribution over traces

- System is a Markov probability distribution over traces
- Property is described by Muller automaton

- System is a Markov probability distribution over traces
- Property is described by Muller automaton
- We can determine the existence of information flow by linear algebra tricks

- System is a Markov probability distribution over traces
- Property is described by Muller automaton
- We can determine the existence of information flow by linear algebra tricks

- System is a Markov probability distribution over traces
- Property is described by Muller automaton
- We can determine the existence of information flow by linear algebra tricks

Future work

- More general models for systems and properties
- Quantitative measure for information flow

- System is a Markov probability distribution over traces
- Property is described by Muller automaton
- We can determine the existence of information flow by linear algebra tricks

Future work

- More general models for systems and properties
- Quantitative measure for information flow

Thanks for your attention! Questions?

Danièle Beauc	quier	http://www.univ-paris12.fr/lacl/beauquier/
Marie Duflot	http://	www.univ-paris12.fr/lacl/duflot/
Yury Lifshits	http	://yury.name

Some related work:

D. Beauquier, M. Duflot, Y. Lifshits Decidability of Parameterized Probabilistic Information Flow. CSR'07. http://yury.name/papers/beauquier2007decidability.pdf

D. Beauquier, M. Duflot, M. Minea A Probabilistic Property-Specific Approach to Information Flow. MMM-ACNS'05. http://www.univ-paris12.fr/lacl/Rapports/publications/TR-2005-02.pdf

A. Slissenko

Complexity problems in the analysis of information systems security. MMM=ACNS'03. http://www.springerlink.com/index/WKDENHGBAFE28KNC.pdf