Four Results of Jon Kleinberg A Talk for St.Petersburg Mathematical Society

Yury Lifshits

Steklov Institute of Mathematics at St.Petersburg

May 2007

Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize

• Who is Jon Kleinberg

Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg

2 Hubs and Authorities

Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg

- 2 Hubs and Authorities
- Nearest Neighbors: Faster Than Brute Force

Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg

- 2 Hubs and Authorities
- Nearest Neighbors: Faster Than Brute Force
 - 4 Navigation in a Small World

Nevanlinna Prize for Jon Kleinberg History of Nevanlinna Prize Who is Jon Kleinberg

- 2 Hubs and Authorities
- Nearest Neighbors: Faster Than Brute Force
 - 4 Navigation in a Small World
- Bursty Structure in Streams

Part I

History of Nevanlinna Prize Career of Jon Kleinberg

Nevanlinna Prize

The Rolf Nevanlinna Prize is awarded **once every 4 years** at the International Congress of Mathematicians, for outstanding contributions in **Mathematical Aspects of Information Sciences** including:

- All mathematical aspects of computer science, including complexity theory, logic of programming languages, analysis of algorithms, cryptography, computer vision, pattern recognition, information processing and modelling of intelligence.
- Scientific computing and numerical analysis. Computational aspects of optimization and control theory. Computer algebra.

Only scientists under 40 are eligible

Previous Winners

- 1982 Robert Tarjan: data structures, graph algorithms
- 1986 Leslie Valiant: learning theory, complexity, parallel computing
- 1990 Alexander Razborov: work around P vs. NP
- 1994 Avi Wigderson: complexity and cryptography
- 1998 Peter Shor: quantum algorithm for factoring problem
- 2002 Madhu Sudan: coding theory, probabilistically checkable proofs and inapproximability

Short Bio of Jon Kleinberg

- 1971 Jon Kleinberg was born in Boston
- 1993 Bachelor degree from Cornell
- 1996 Ph.D. from MIT (advisor Michel X. Goemans)
- Since 1996 Cornell faculty
- 2006 Nevanlinna Prize

• According to DBLP: 108 papers and 85 coauthors for 1992-2006

- According to DBLP: 108 papers and 85 coauthors for 1992-2006
- H-Index = 36 (according to scholar.google.com)

- According to DBLP: 108 papers and 85 coauthors for 1992-2006
- H-Index = 36 (according to scholar.google.com)
- Book "Algorithm Design" (2005, with Éva Tardos)

- According to DBLP: 108 papers and 85 coauthors for 1992-2006
- H-Index = 36 (according to scholar.google.com)
- Book "Algorithm Design" (2005, with Éva Tardos)
- NSF Career Award, ONR Young Investigator Award, MacArthur Foundation Fellowship, Packard Foundation Fellowship, Sloan Foundation Fellowship, "Faculty of the Year" Cornell'2002

- According to DBLP: 108 papers and 85 coauthors for 1992-2006
- H-Index = 36 (according to scholar.google.com)
- Book "Algorithm Design" (2005, with Éva Tardos)
- NSF Career Award, ONR Young Investigator Award, MacArthur Foundation Fellowship, Packard Foundation Fellowship, Sloan Foundation Fellowship, "Faculty of the Year" Cornell'2002
- Strong connections to IBM Almaden Research Center

- According to DBLP: 108 papers and 85 coauthors for 1992-2006
- H-Index = 36 (according to scholar.google.com)
- Book "Algorithm Design" (2005, with Éva Tardos)
- NSF Career Award, ONR Young Investigator Award, MacArthur Foundation Fellowship, Packard Foundation Fellowship, Sloan Foundation Fellowship, "Faculty of the Year" Cornell'2002
- Strong connections to IBM Almaden Research Center
- Courses "The Structure of Information Networks" and "Randomized and High-Dimensional Algorithms"

- According to DBLP: 108 papers and 85 coauthors for 1992-2006
- H-Index = 36 (according to scholar.google.com)
- Book "Algorithm Design" (2005, with Éva Tardos)
- NSF Career Award, ONR Young Investigator Award, MacArthur Foundation Fellowship, Packard Foundation Fellowship, Sloan Foundation Fellowship, "Faculty of the Year" Cornell'2002
- Strong connections to IBM Almaden Research Center
- Courses "The Structure of Information Networks" and "Randomized and High-Dimensional Algorithms"
- Chair of STOC'06

• **Direction:** from practical problems to mathematical ideas

- **Direction:** from practical problems to mathematical ideas
- Motivation: make life better

- **Direction:** from practical problems to mathematical ideas
- Motivation: make life better
- Validation: mathematical proofs and experiments

- **Direction:** from practical problems to mathematical ideas
- Motivation: make life better
- Validation: mathematical proofs and experiments
- Connections with: sociology

- **Direction:** from practical problems to mathematical ideas
- Motivation: make life better
- Validation: mathematical proofs and experiments
- Connections with: sociology
- Key component: new models/formalizations, not proofs

Part II

Authoritative sources in a hyperlinked environment Jon Kleinberg — SODA'98

2580 citations according to scholar.google.com, May 2007

How to define the most relevant webpage to "Bill Gates"?

How to define the most relevant webpage to "Bill Gates"?

Naive ideas

- By frequency of query words in a webpage
- By number of links from other **relevant** pages

Web Search: Formal Settings

- Every webpage is represented as a weighted set of keywords
- There are hyperlinks (directed edges) between webpages

Web Search: Formal Settings

- Every webpage is represented as a weighted set of keywords
- There are hyperlinks (directed edges) between webpages

Conceptual problem: define a relevance rank based on keyword weights and link structure of the web

HITS Algorithm

- Given a query construct a focused subgraph
 F(query) of the web
- Compute hubs and authorities ranks for all vertices in *F(query)*

HITS Algorithm

- Given a query construct a focused subgraph
 F(query) of the web
- Compute hubs and authorities ranks for all vertices in *F(query)*

Focused subgraph: pages with highest weights of query words **and** pages hyperlinked with them

Mutual reinforcing relationship:

- A good **hub** is a webpage with many links **to** query-authoritative pages
- A good **authority** is a webpage with many links **from** query-related hubs

Hubs and Authorities: Equations

$$a(p) \sim \sum_{q:(q,p) \in E} h(q)$$

$$h(p) \sim \sum_{q:(p,q) \in E} a(q)$$

Hubs and Authorities: Solution

Initial estimate:

$$orall p: a_0(p)=1, h_0(p)=1$$

Iteration:

$$egin{aligned} &a_{k+1}(p) = \sum_{q:(q,p)\in E} h_k(q) \ &h_{k+1}(p) = \sum_{q:(p,q)\in E} a_k(q) \end{aligned}$$

We normalize \bar{a}_k, \bar{h}_k after every step

Convergence Theorem

Theorem

Let M be the adjacency matrix of focused subgraph F(query). Then \bar{a}_k converges to principal eigenvector of $M^T M$ and \bar{h}_k converges to principal eigenvector of MM^T

Lessons from Hubs and Authorities

- Link structure is useful for relevance sorting
- Link popularity is defined by linear equations
- Solution can be computed by iterative algorithm

Part III

Two algorithms for nearest-neighbor search in high dimensions Jon Kleinberg — STOC'97

173 citations according to scholar.google.com, May 2007

Informal Problem Statement

To preprocess a database of *n* objects so that given a query object, one can effectively determine its nearest neighbors in database

First Application (1960s)

Nearest neighbors for classification:

Picture from http://cgm.cs.mcgill.ca/ soss/cs644/projects/perrier/Image25.gif

Applications

What applications of nearest neighbors do you know?

Applications

What applications of nearest neighbors do you know?

- Statistical data analysis, e.g. medicine diagnosis
- Pattern recognition, e.g. for handwriting
- Code plagiarism detection
- Coding theory
- Future applications: recommendation systems, ads distribution, personalized news aggregation

Challenge

Brute force algorithm

No preprocessing O(nd) query time for *n* points in *d*-dimensional space

Challenge

Brute force algorithm

No preprocessing O(nd) query time for *n* points in *d*-dimensional space

Open Problem: Is there any preprocessing method with data structure of poly(n + d) size and o(nd) query time?

Approximate Nearest Neighbors

Definition

p is ε -approximate nearest neighbor for q iff $\forall p' \in DB$: $d(p,q) \leq (1+\varepsilon)d(p',q)$

Kleinberg Algorithm

Theorem

For every ε , δ there exists a data structure with $\mathcal{O}^*(d^2n)$ construction time and $\mathcal{O}(n + d \log^3 n)$ query processing time. It correctly answer ε -nearest neighbor queries with probability $1 - \delta$.

Data Structure Construction

- Choose $I = d \log^2 n \log^2 d$ random vectors $V = \{v_1, \dots, v_l\}$ with unit norm
- Precompute all scalar products between database points and vectors from V

Random Projection Test

Input: points x, y and q, vectors u_1, \ldots, u_k **Question:** what is smaller |x - q| or |y - q|?

Test:

For all *i* compare $(x \cdot v_i - q \cdot v_i)$ with $(y \cdot v_i - q \cdot v_i)$ Return the point which has "smaller" on majority of vectors

Query Processing

- Choose a random subset Γ of V, $|\Gamma| = \log^3 n$
- Compute scalar products between query point *q* and vectors from Γ
- Make a tournament for choosing a nearest neighbor:
 - Draw a binary tree of height log n
 - Assign all database points to leafs
 - Solution For every internal point (say, x vs. y) make a random projection test using some vectors from Γ

Part IV

The small-world phenomenon: An algorithmic perspective Jon Kleinberg — STOC'00

433 citations according to scholar.google.com, May 2007

Milgram's Small World Experiment

- Starting point: Wichita/Omaha, endpoint: Boston
- Basic information about a target contact person in Boston was initially sent to randomly selected individuals.
- If recipient knew the contact person, he/she should forward the letter directly to that person
- If recipient did not personally know the target then he/she should forward the package to a friend or relative they know personally that is more likely to know the target
- When and if the package eventually reached the contact person in Boston, the researchers count the number of times it had been forwarded from person to person.

Small World Model

- $n \times n$ grid of n^2 nodes
- Every node *p* is connected to its direct neighbors: right, left, up and down
- Additionally, every node *p* has an arc to a "random" node *q*, where probability for *q* to be chosen is proportional to |*p* − *q*|^{-α}, α ≥ 0

Small World Model

Picture from www.math.cornell.edu/~durrett/smw/kleinberg2.gif

A graph is **navigable**, if there exists **decentralized** algorithm finding connecting paths in polylog(n) time

A graph is **navigable**, if there exists **decentralized** algorithm finding connecting paths in polylog(n) time

Whether small world is navigable?

Kleinberg's Results

Theorem

For $\alpha = 2$ small world is navigable, for all other nonnegative values of α it is not.

Part V

Bursty and Hierarchical Structure in Streams Jon Kleinberg — KDD'02

150 citations according to scholar.google.com, May 2007

- A stream of events
- Every event = set of keywords + time stamp

- A stream of events
- Every event = set of keywords + time stamp

How should we identify time intervals with unusually high frequency of a specific keyword?

Conceptual Solution

Hidden Markov Model methodology:

- There is a "creature" who generates our stream
- This creature can be described as a finite automaton of known structure but with unknown state sequence
- We will find "the most fitting" sequence of states for our data
- Based on this sequence we can identify all bursts

Very Simple Example (1/2)

Keyword: "grant" **Events:** every day either there is an email with this keyword or there is not

Example Data: we have email archive for two weeks

01110100001000

Very Simple Example (1/2)

01110100001000

Automaton: two states "grant deadline" and "vacations"

Fitting function: 1 point penalty for mismatches "grant deadline — no grant emails" and "vacations — email with grants", 1 point penalty for switching state of automaton

Very Simple Example (1/2)

01110100001000

Automaton: two states "grant deadline" and "vacations"

Fitting function: 1 point penalty for mismatches "grant deadline — no grant emails" and "vacations — email with grants", 1 point penalty for switching state of automaton

Optimal sequence: VDDDDDV VVVVVV

Algorithm for Detecting Bursts

How to compute the optimal state sequence?

Algorithm for Detecting Bursts

How to compute the optimal state sequence?

Dynamic programming:

- For every day *d* and every state *s* we will compute the optimal state sequence for period [1..*d*] ending with state *s*
- When a data for new day comes we try all values for yesterday and choose the best one
- For optimal sequence for the whole interval [1..*D*] we just take the maximum over all states

Home problem

Find an anagram for "KLEINBERG"

• Hubs and Authorities is an iterative algorithm for computing relevance rank

- Hubs and Authorities is an iterative algorithm for computing relevance rank
- Small world always can have small diameter but no decentralized method for finding short paths

- Hubs and Authorities is an iterative algorithm for computing relevance rank
- Small world always can have small diameter but no decentralized method for finding short paths
- Bursts can be identified as states of imaginary automaton that generates event stream

- Hubs and Authorities is an iterative algorithm for computing relevance rank
- Small world always can have small diameter but no decentralized method for finding short paths
- Bursts can be identified as states of imaginary automaton that generates event stream
- Nearest neighbors can be found by looking at projections to random vectors

- Hubs and Authorities is an iterative algorithm for computing relevance rank
- Small world always can have small diameter but no decentralized method for finding short paths
- Bursts can be identified as states of imaginary automaton that generates event stream
- Nearest neighbors can be found by looking at projections to random vectors

- Hubs and Authorities is an iterative algorithm for computing relevance rank
- Small world always can have small diameter but no decentralized method for finding short paths
- Bursts can be identified as states of imaginary automaton that generates event stream
- Nearest neighbors can be found by looking at projections to random vectors

Thank you for your attention! Questions?

References

All materials of this talk will be published at **my homepage**: http://logic.pdmi.ras.ru/~yura

Jon Kleinberg

Authoritative sources in a hyperlinked environment — SODA'98 http://www.cs.cornell.edu/home/kleinber/auth.pdf

Jon Kleinberg

The small-world phenomenon: An algorithmic perspective — STOC'00 http://www.cs.cornell.edu/home/kleinber/swn.ps

Jon Kleinberg

Bursty and Hierarchical Structure in Streams - KDD'02

http://www.cs.cornell.edu/home/kleinber/bhs.ps

Jon Kleinberg

Two algorithms for nearest-neighbor search in high dimensions - STOC'97

http://www.cs.cornell.edu/home/kleinber/stoc97-nn.pdf

Relevant Links

Official site of Nevanlinna Prize

http://www.mathunion.org/Prizes/Nevanlinna/index.html

Homepage of Jon Kleinberg

http://www.cs.cornell.edu/home/kleinber/

Jon Kleinberg at DBLP

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kleinberg:Jon_M=.html

IMU news release

http://www.mathunion.org/medals/2006/kleinbergENG.pdf

Interview of Jon Kleinberg to "Technology Research News"

http://www.trnmag.com/Stories/2005/120505/View_Jon_Kleinberg_120505.html

A talk by Jon Kleinberg on Yahoo! Video

http://video.yahoo.com/video/play?vid=62055