Similarity Search: a Web Perspective

Yury Lifshits

Caltech

http://yury.name

Google Tech Talk

18 October 2007

1/26

Similarity Search in a Nutshell

Input: Set of objects
Task: Preprocess it

Query: New object

Task: Find the most

similar one in the dataset

2/26

Roadmap

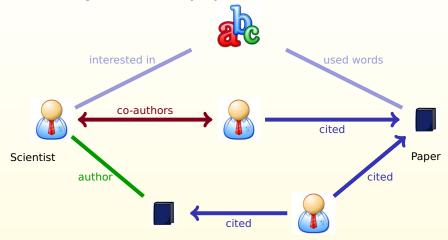
Revising Algorithms

1

Similarity Search in Web

Similarity Search vs. Web

- Recommendations (movies, books...)
- Personalized news aggregation
- Ad targeting
- "Best match" search
 Resume, job, BF/GF, car, apartment
- Co-occurrence similarity
 Suggesting new search terms


5/26

2

Similarity Search in Theory

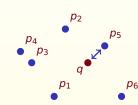
Similarity in Networks

Similarity chart for paper recommendation:

Similarity is high when:

of chains is high, chains are short, chains are heavy

Nearest Neighbor Search


Search space: object domain \mathbb{U} ,

distance function d

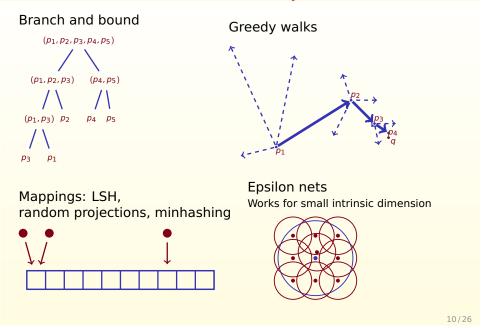
Input: database $S = \{p_1, \dots, p_n\} \subseteq \mathbb{U}$

Query: $q \in \mathbb{U}$

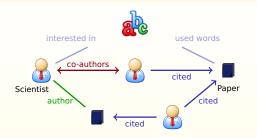
Task: find $\operatorname{argmin}_{p_i} d(p_i, q)$

Data Models:

- General metric space: triangle inequality + oracle access
- lacktriangle k-dimensional Euclidean space with Euclidean, Manhattan, L_p or angle metric
- Strings with Hamming or Levenshtein distance
- Finite sets with Jaccard metric $d(A, B) = 1 \frac{|A \cap B|}{|A \cup B|}$


Which One to Use?

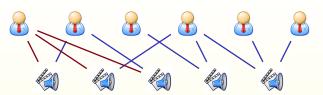
Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height fixed-queries tree AESA Vantage-point tree LAESA R*-tree Burkhard-Keller tree BBD tree Navigating Nets voronoi tree Balanced aspect ratio tree Metric tree vps-tree M-tree Locality-Sensitive Hashing SS-tree R-tree Spatial approximation tree Multi-vantage point tree Bisector tree mb-tree Cover tree Hybrid tree Generalized hyperplane tree Slim tree Spill Tree Fixed queries tree X-tree K-d tree Balltree Quadtree Octree Post-office tree


3

Nearest Neighbors: Revising the Problem

Four Famous Techniques

Revision: Data Model



- Several types of nodes and (weighted) edges, restrictions on degrees
- Similarity chart: List of "contributing chains"
- Similarity (relevance): sum of weight products over all contributing chains

Similarity Search in Bipartite Graphs

n vertices degree ≤ *k*

m vertices

Dataset: bipartite graph

Person-person similarity: # of 2-step chains Person-movie similarity: # of 3-step chains

Query: new person q (out degree $\leq k$) **Task:** find person (movie) with maximal number of 2-step (3-step) chains to q

Open problem:

Existence of similarity search with poly(m, n) preprocessing and $poly(k, \log n, \log m)$ query time

13/26

Revision: Notion of Success

In theory:

c-approximate algorithm returns $p: d(p,q) \le c \cdot d(p_{NN},q)$ Polynomial preprocessing & sublinear search algorithm [Al06]

With separation effect:

Returning random object has approximation factor 2
But returning random object is in fact **very poor algorithm**

Suggestion

Focus on *c*-approximation of similarity

Open problem:

Existence of polynomial preprocessing & sublinear search approximate algorithm for Euclidian space with cosine similarity

Revision: Basic Assumptions

In theory:

Triangle inequality Doubling dimension is $o(\log n)$

Typical **web dataset** has separation effect

For almost all $i, j : 1/2 \le d(p_i, p_i) \le 1$

Example: Jackard metric for # of joint friends

Corollaries:

In general metric space exact problem is intractable Branch and bound algorithms visit every object Doubling dimension is at least log n/2

14/26

Revision: Dynamic Aspects

In theory:

Handling insertions & deletions

Web:

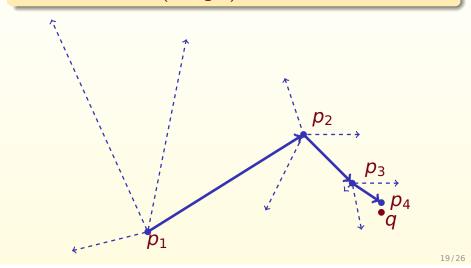
Adding & removing edges

Affects many pairwise similarities

Weights are changing

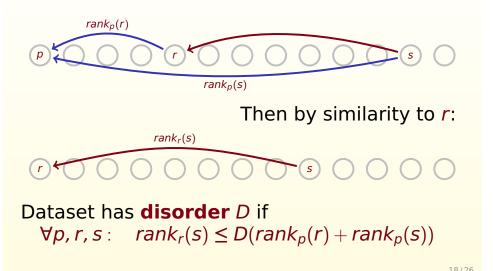
Example: # of votes/comments on Digg.com

General formula for similarity is changing


4

New Algorithms for Similarity Search

17/26


Ranwalk Algorithm [GLS08]

Similarity search with roughly $\mathcal{O}(Dn \log n)$ data structure and $\mathcal{O}(D \log n)$ search time

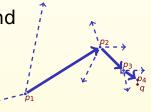
Concept of Disorder

Sort all objects by their similarity to *p*:

Ranwalk: Data structure

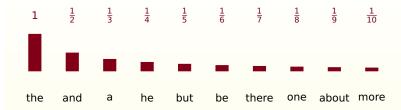
Set $D' = 6D \log \log n$ For every object p in database S choose at random:

- D' pointers to objects in S = B(p, n)
- D' pointers to objects in $B(p, \frac{n}{2})$


• D' pointers to objects in B(p, D')

Ranwalk: Search via Greedy Walk

- Start at random point p₀
- Check endpoints of 1st level pointers, move to the best one p₁


. . .

 Check all D endpoints of bottom-level pointers and return the best one p_{log n}

21/26

Zipf Model

- Terms t_1, \ldots, t_m
- To generate a document we take every t_i with probability $\frac{1}{i}$
- Database is *n* independently chosen documents
- Similarity between documents is defined as the number of common terms

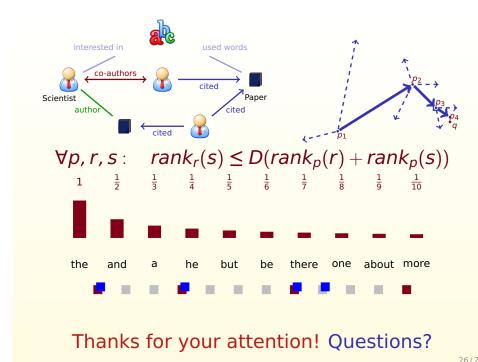
22/26

Magic Level Theorem [HLN07]

For **magic level** $q = \sqrt{2 \log_e n}$:

- Any match: W.h.p. the best document in database has $q \pm \varepsilon$ overlap with query document
 -
- 2 Prefix match: W.h.p. there is a document in database containing $q \pm \varepsilon$ of top frequent terms of query document

Best prefix match is much easier to search for!


Questions to Google

- Google problems: What are the main challenges in implementing similarity search?
- Announce the winner: Which similarity search algorithms do you use?
- Google datasets: Give us benchmarks in ad targeting, news aggregation, citation networks

2/1/2

Sponsored Links

- http://yury.name
- Yury Lifshits
 Nearest Neighbors and Similarity Search
 Tutorial, bibliography, people, links, open problems
 http://simsearch.yury.name
- Navin Goyal, Yury Lifshits, Hinrich Schütze
 Disorder Inequality: A Combinatorial Approach to Nearest
 Neighbor Search
 http://yury.name/papers/goyal2008disorder.pdf
- Benjamin Hoffmann, Yury Lifshits, Dirk Novotka Maximal Intersection Queries in Randomized Graph Models http://yury.name/papers/hoffmann2007maximal.pdf

