Maximal Intersection Queries in Randomized Graph Models

Benjamin Hoffmann ${ }^{1}$ Yury Lifshits ${ }^{2}$ Dirk Nowotka ${ }^{1}$

${ }^{1}$ University of Stuttgart
${ }^{2}$ Steklov Institute of Mathematics at St. Petersburg
2nd International Computer Science Symposium in Russia 2007

> CSBI

The Maximal Intersection Problem

The Maximal Intersection Problem (MaxInt)

Database: A family \mathcal{F} of n sets, $|f| \leq k \forall f \in \mathcal{F}$.
Query: Given a set $f_{\text {new }}$ with $\left|f_{\text {new }}\right| \leq k$, return $f_{i} \in \mathcal{F}$ with maximal $\left|f_{\text {new }} \cap f_{i}\right|$.
Constraints: Preprocessing time $n \cdot p o l y l o g(n) \cdot p o l y(k)$. Query time polylog(n) • poly (k).

The Maximal Intersection Problem

The Maximal Intersection Problem (MaxInt)

Database: A family \mathcal{F} of n sets, $|f| \leq k \forall f \in \mathcal{F}$.
Query: Given a set $f_{\text {new }}$ with $\left|f_{\text {new }}\right| \leq k$, return $f_{i} \in \mathcal{F}$ with maximal $\left|f_{\text {new }} \cap f_{i}\right|$.
Constraints: Preprocessing time $n \cdot p o l y l o g(n) \cdot p o l y(k)$. Query time polylog(n) • poly (k).

The Maximal Intersection Problem

The Maximal Intersection Problem (MaxInt)

Database: A family \mathcal{F} of n sets, $|f| \leq k \forall f \in \mathcal{F}$.
Query: Given a set $f_{\text {new }}$ with $\left|f_{\text {new }}\right| \leq k$, return $f_{i} \in \mathcal{F}$ with maximal $\left|f_{\text {new }} \cap f_{i}\right|$.
Constraints: Preprocessing time $n \cdot p o l y l o g(n) \cdot p o l y(k)$. Query time polylog(n) • poly (k).

Motivation

Possible applications of MaxInt:

- Advertisement matching: Which website should an advertisement be placed on (e.g. Google AdSense)?
- Text clustering/classification: Find a document in a database that has a maximal number of common terms with a newcomer document (e.g. Reuters).
- Recommendation systems, near-duplicate detection, code plagiarism detection, search engines, ...

Relation to Nearest Neighbor

Nearest Neighbor Problem: Determine in a general metric space a point that is closest to a given query point (Zezula et al., Similarity Search - The Metric Space Approach, Springer, 2006).

MaxInt: special case of Nearest Neighbor.
Similarity: size of intersection.

Nearest Neighbor Problem: Determine in a general metric space a point that is closest to a given query point (Zezula et al., Similarity Search - The Metric Space Approach, Springer, 2006).

MaxInt: special case of Nearest Neighbor.
Similarity: size of intersection.

Main result

Assumption: Input is taken from some predefined distribution.

There exists an algorithm that finds with very high probability an almost optimal solution in time logarithmic in the size of the family.

Zipf ${ }^{1}$ (1932): In natural language texts the (absolute) frequency f of a term is approximately inversely proportional to its rank r in the frequency table.
\exists constant c such that $f \cdot r \approx c$.
${ }^{1}$ George Kingsley Zipf, 1902-1950

Zipf's law

Word	Freq.	Rank	$f \cdot r$	Word	Freq.	Rank	$f \cdot r$
the	3332	1	3332	turned	51	200	10200
and	2972	2	5944	you'll	30	300	9000
a	1775	3	5235	name	21	400	8400
he	877	10	8770	comes	16	500	8000
but	410	20	8400	group	13	600	7800
be	294	30	8820	lead	11	700	7700
there	222	40	8880	friends	10	800	8000
one	172	50	8600	begin	9	900	8100
about	158	60	9480	family	8	1000	8000
more	138	70	9660	brushed	4	2000	8000
never	124	80	9920	sins	2	3000	6000
Oh	116	90	10440	Could	2	4000	8000
two	104	100	10400	Applausive	1	8000	8000

Empirical evaluation of Zipf's law on Tom Sawyer (Manning/Schütze, Foundations of statistical natural language processing, MIT Press, 1999)

Zipf model

Documents $\mathcal{D}=\left\{d_{1}, \ldots, d_{n}\right\}$ Terms $\mathcal{T}=\left\{t_{1}, \ldots, t_{m}\right\}, m \leq \operatorname{poly}(n)$

Generating a document collection:

- Every document is generated independently.
- Term occurences are also independent.
- A document contains term t_{i} with probability $\frac{1}{i}$.
- Expected number of terms in a document: $\ln m$.

Documents $\mathcal{D}=\left\{d_{1}, \ldots, d_{n}\right\}$
Terms $\mathcal{T}=\left\{t_{1}, \ldots, t_{m}\right\}, m \leq \operatorname{poly}(n)$

Generating a document collection:

- Every document is generated independently.
- Term occurences are also independent.
- A document contains term t_{i} with probability $\frac{1}{i}$.
- Expected number of terms in a document: $\ln m$.

Zipf model (cont.)

Definition (Relative frequency of a term t in a document collection D):

$$
\frac{|\{d \in \mathcal{D} \mid t \in d\}|}{|\mathcal{D}|}
$$

In the Zipf model:

- Expected relative frequency for t_{i} : $\frac{1}{i}$
- Expected frequency rank for t_{i} : i-th value among those of all terms.
\Rightarrow Zipf model reflects in a natural way Zipf's law.

Zipf model: relation to random graphs

Representing the data as a graph: bipartite graph (documents/terms)

\Rightarrow Zipf's law for distribution of term degrees, $P(k)=\frac{1}{k}$.

Threshold phenomenon

Assume that the terms of a query document are ordered by their frequency in the document collection.

Two events:

- Any q-match: $\exists d \in D$ that has at least q common terms with the query document.
- Prefix q-match: $\exists d \in D$ that has at least q "top" terms with the query document.

For a document collection following the Zipf model the following holds:

- The probability for both events is close to one for small q

Threshold phenomenon

Assume that the terms of a query document are ordered by their frequency in the document collection.

Two events:

- Any q-match: $\exists d \in D$ that has at least q common terms with the query document.
- Prefix q-match: $\exists d \in D$ that has at least q "top" terms with the query document.

For a document collection following the Zipf model the following holds:

- The probability for both events is close to one for small q.

Threshold phenomenon

Assume that the terms of a query document are ordered by their frequency in the document collection.

Two events:

- Any q-match: $\exists d \in D$ that has at least q common terms with the query document.
- Prefix q-match: $\exists d \in D$ that has at least q "top" terms with the query document.

For a document collection following the Zipf model the following holds:

- The probability for both events is close to one for small q.
- At some magic level the probability for both events falls to nearly zero.

Assume that the terms of a query document are ordered by their frequency in the document collection.

Two events:

- Any q-match: $\exists d \in D$ that has at least q common terms with the query document.
- Prefix q-match: $\exists d \in D$ that has at least q "top" terms with the query document.

For a document collection following the Zipf model the following holds:

- The probability for both events is close to one for small q.
- At some magic level the probability for both events falls to nearly zero.

Threshold phenomenon

Exemplary probability curves for any q-match and prefix q-match. ($q=$ no. of matched terms)

Zipf model (cont.)

Partitioning of \mathcal{T} :

Group P_{i} includes terms from $t_{\left[e^{i-1}\right\rceil}$ to $t_{\left\lfloor e^{i}\right\rfloor}$.
A document that contains $\ln m$ terms $p_{1} \ldots p_{\text {ln } m}, p_{i} \in P_{i}$, will be called regular.

Zipf model (cont.)

Partitioning of \mathcal{T} :

Group P_{i} includes terms from $t_{\left\lceil e^{i-1}\right\rceil}$ to $t_{\left\lfloor e^{i}\right\rfloor}$.
A document that contains $\ln m$ terms $p_{1} \ldots p_{\ln m}, p_{i} \in P_{i}$, will be called regular.

Magic level:

$$
q=\sqrt{2 \ln n} \quad(n=\text { no. of documents }) .
$$

Theorem

Let $3 \leq \gamma<q-1, \gamma \in \mathbb{N}$. Fix n, m and a regular query document $d_{\text {new }}$. Then for a document collection following the Zipf model the following holds:
(1) The probability that there exists a document $d \in \mathcal{D}$ that contains the first $q-\gamma$ terms of $d_{\text {new }}$ is greater than $1-2^{-\frac{q(\gamma+1)}{2}}$.
(2) The probability that there exists a document $d \in \mathcal{D}$ that contains at least $q+\gamma$ terms of $d_{\text {new }}$ is smaller than $\frac{1}{e^{(\gamma-2) q-1}}$.

Magic level for the Zipf model

Exemplary probability curves for any q-match and prefix q-match. ($q=$ no. of matched terms)

Magic level:

$$
q=\sqrt{2 \ln n} \quad(n=\text { no. of documents }) .
$$

Theorem

Let $3 \leq \gamma<q-1, \gamma \in \mathbb{N}$. Fix n, m and a regular query document $d_{\text {new }}$. Then for a document collection following the Zipf model the following holds:
(1) The probability that there exists a document $d \in \mathcal{D}$ that contains the first $q-\gamma$ terms of $d_{\text {new }}$ is greater than $1-2^{-\frac{q(\gamma+1)}{2}}$.
(2) The probability that there exists a document $d \in \mathcal{D}$ that contains at least $q+\gamma$ terms of $d_{\text {new }}$ is smaller than $\frac{1}{e^{(\gamma-2) q-1}}$.

MAXINT algorithm in the Zipf model

Preprocessing

(1) For every document: Sort the term list according to the position of the term in the frequency table.
(2) For every document: Generate the set of all possible regular $(q-\gamma)$-lists.
(3) Sort these regular lists and store for every list a pointer to the corresponding document.
Comple
Query Find a regular $(q-\gamma)$-list having the maximal common prefix with the query document by binary search. Return the document corresponding to this list

MAXINT algorithm in the Zipf model

Preprocessing

(1) For every document: Sort the term list according to the position of the term in the frequency table.
(2) For every document: Generate the set of all possible regular $(q-\gamma)$-lists.
(3) Sort these regular lists and store for every list a pointer to the corresponding document.
Complexity: $\mathcal{O}(\log m \cdot n \cdot \log n)$
Query
Find a regular $(q-\gamma)$-list having the maximal common prefix with
the query document by binary search. Return the document
corresponding to this list.

MAXINT algorithm in the Zipf model

Preprocessing

(1) For every document: Sort the term list according to the position of the term in the frequency table.
(2) For every document: Generate the set of all possible regular $(q-\gamma)$-lists.
(3) Sort these regular lists and store for every list a pointer to the corresponding document.
Complexity: $\mathcal{O}(\log m \cdot n \cdot \log n)$

Query

Find a regular $(q-\gamma)$-list having the maximal common prefix with the query document by binary search. Return the document corresponding to this list.

Complexity: $\mathcal{O}\left(\log ^{2} n\right)$

MAXINT algorithm in the Zipf model

Preprocessing

(1) For every document: Sort the term list according to the position of the term in the frequency table.
(2) For every document: Generate the set of all possible regular $(q-\gamma)$-lists.
(3) Sort these regular lists and store for every list a pointer to the corresponding document.
Complexity: $\mathcal{O}(\log m \cdot n \cdot \log n)$

Query

Find a regular $(q-\gamma)$-list having the maximal common prefix with the query document by binary search. Return the document corresponding to this list.
Complexity: $\mathcal{O}\left(\log ^{2} n\right)$

Future Work

- Does it hold in real life (empirical studies)?
- Does a threshold phenomenon also hold for other randomized models (e.g. preferential attachment model)?
- Does an exact algorithm for MaxInt exist (preserving our time constraints)?

Future Work

- Does it hold in real life (empirical studies)?
- Does a threshold phenomenon also hold for other randomized models (e.g. preferential attachment model)?
- Does an exact algorithm for MaxInt exist (preserving our time constraints)?

Future Work

- Does it hold in real life (empirical studies)?
- Does a threshold phenomenon also hold for other randomized models (e.g. preferential attachment model)?
- Does an exact algorithm for MaxInt exist (preserving our time constraints)?
Thanks for your attention!

Future Work

- Does it hold in real life (empirical studies)?
- Does a threshold phenomenon also hold for other randomized models (e.g. preferential attachment model)?
- Does an exact algorithm for MaxInt exist (preserving our time constraints)?

Thanks for your attention!

