
Novel Approaches to Nearest
Neighbors

Random Walks. SEARCH Class.

Yury Lifshits
http://yury.name

Steklov Institute of Mathematics at St.Petersburg
California Institute of Technology

August 2007

1 / 27

http://yury.name

Outline

1 Welcome to nearest neighbors!

2 Nearest Neighbors via Random Walks

3 Data Structure Complexity: SEARCH Class

2 / 27

Outline

1 Welcome to nearest neighbors!

2 Nearest Neighbors via Random Walks

3 Data Structure Complexity: SEARCH Class

2 / 27

Outline

1 Welcome to nearest neighbors!

2 Nearest Neighbors via Random Walks

3 Data Structure Complexity: SEARCH Class

2 / 27

Chapter I

Welcome to Nearest Neighbors!

3 / 27

Problem Statement

Search space: object domain U, similarity function σ

Input: database S = {p1, . . . , pn} ⊆ U
Query: q ∈ U
Task: find argmax σ(pi , q)

p1

p2

p3

p4
p5

p6

q

4 / 27

Problem Statement

Search space: object domain U, similarity function σ

Input: database S = {p1, . . . , pn} ⊆ U
Query: q ∈ U
Task: find argmax σ(pi , q)

p1

p2

p3

p4
p5

p6

q

4 / 27

Problem Statement

Search space: object domain U, similarity function σ

Input: database S = {p1, . . . , pn} ⊆ U
Query: q ∈ U
Task: find argmax σ(pi , q)

p1

p2

p3

p4
p5

p6

q

4 / 27

Applications

Content-based retrieval
Spelling correction Searching for similar

DNA sequences Related pages web search
Concept matching

kNN classification rule
Nearest-neighbor interpolation Near-duplicate

detection Plagiarism detection
Computing co-occurrence similarity

Recommendation systems Personalized news
aggregation Behavioral targeting

Maximum likelihood decoding MPEG
compression

5 / 27

Brief History

1908 Voronoi diagram

1967 kNN classification rule by Cover and Hart

1973 Post-office problem posed by Knuth

1997 The paper by Kleinberg, beginning of provable
upper/lower bounds

2006 Similarity Search book by Zezula, Amato,
Dohnal and Batko

2008 First International Workshop on Similarity
Search. Consider submitting!

6 / 27

Some Nearest Neighbor Solutions
Sphere Rectangle Tree Orchard’s Algorithm LAESA

k-d-B tree Geometric near-neighbor access tree
Excluded middle vantage point forest mvp-tree Fixed-height

fixed-queries tree AESA Vantage-point
tree R∗-tree Burkhard-Keller tree BBD tree

Navigating Nets Voronoi tree Balanced aspect ratio tree Metric tree

vps -tree M-tree Locality-Sensitive Hashing
SS-tree R-tree Spatial approximation tree Multi-vantage

point tree Bisector tree mb-tree

Generalized hyperplane tree
Hybrid tree Slim tree Spill Tree Fixed queries tree X-tree k-d
tree Balltree Quadtree Octree Post-office tree

7 / 27

Part II

Disorder Inequality

This section represents joint work with Navin Goyal and
Hinrich Schütze

8 / 27

Concept of Disorder

Sort all objects in database S by their similarity to p
Let rankp(s) be position of object s in this list

Disorder inequality for some constant D:

∀p, r , s ∈ {q}∪S : rankr(s) ≤ D·(rankp(r)+rankp(s))

Minimal D providing disorder inequality is called disorder
constant of a given set

For “regular” sets in d -dimensional Euclidean space D ≈ 2d−1

9 / 27

Concept of Disorder

Sort all objects in database S by their similarity to p
Let rankp(s) be position of object s in this list

Disorder inequality for some constant D:

∀p, r , s ∈ {q}∪S : rankr(s) ≤ D·(rankp(r)+rankp(s))

Minimal D providing disorder inequality is called disorder
constant of a given set

For “regular” sets in d -dimensional Euclidean space D ≈ 2d−1

9 / 27

Concept of Disorder

Sort all objects in database S by their similarity to p
Let rankp(s) be position of object s in this list

Disorder inequality for some constant D:

∀p, r , s ∈ {q}∪S : rankr(s) ≤ D·(rankp(r)+rankp(s))

Minimal D providing disorder inequality is called disorder
constant of a given set

For “regular” sets in d -dimensional Euclidean space D ≈ 2d−1

9 / 27

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

10 / 27

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

10 / 27

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

10 / 27

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

10 / 27

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

10 / 27

Ranwalk Informally (1/2)

q
p1

p2

p3

p4

10 / 27

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

11 / 27

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

11 / 27

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

11 / 27

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

11 / 27

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

11 / 27

Ranwalk Informally (2/2)
Hierarchical greedy navigation:

1 Start at random city p1

2 Among all airlines choose the one going most closely to q,
move there (say, to p2)

3 Among all railway routes from p2 choose the one going most
closely to q, move there (p3)

4 Among all bus routes from p3 choose the one going most
closely to q, move there (p4)

5 Repeat this log n times and return the final city

Transport system: for level k choose c random arcs to
n
2k neighborhood

11 / 27

Ranwalk Algorithm
Preprocessing:

For every point p in database we sort all other points by their
similarity to p

Data structure: n lists of n − 1 points each.

Query processing:
1 Step 0: choose a random point p0 in the database.

2 From k = 1 to k = log n do Step k : Choose
D ′ := 3D(log log n + 1) random points from
min(n, 3Dn

2k)-neighborhood of pk−1. Compute similarities of
these points w.r.t. q and set pk to be the most similar one.

3 If rankplog n
(q) > D go to step 0, otherwise search the whole

D2-neighborhood of plog n and return the point most similar to
q as the final answer.

12 / 27

Analysis of Ranwalk

Theorem
Assume that database points together with query point
S ∪ {q} satisfy disorder inequality with constant D:

rankx(y) ≤ D(rankz(x) + rankz(y)).

Then Ranwalk algorithm always answers nearest neighbor
queries correctly. It uses the following resources:
Preprocessing space: O(n2).
Preprocessing time: O(n2 log n).
Expected query time: O(D log n log log n + D2).

13 / 27

Arwalk Algorithm

Preprocessing:

For every point p in database we sort all other points by their
similarity to p. For every level number k from 1 to log n we
store pointers to D ′ = 3D(log log n + log 1/δ) random points
within min(n, 3Dn

2k) most similar to p points.

Query processing:

1 Step 0: choose a random point p0 in the database.

2 From k = 1 to k = log n do Step k : go by pk−1 pointers of
level k . Compute similarities of these D ′ points to q and set
pk to be the most similar one.

3 Return plog n.

14 / 27

Analysis of Algorithm

Theorem
Assume that database points together with query point
S ∪ {q} satisfy disorder inequality with constant D:

rankx(y) ≤ D(rankz(x) + rankz(y)).

Then for any probability of error δ Arwalk algorithm
answers nearest neighbor query within the following
constraints:
Preprocessing space: O(nD log n(log log n + log 1/δ)).
Preprocessing time: O(n2 log n).
Query time: O(D log n(log log n + log 1/δ)).

15 / 27

Future of Disorder (1/2)

Average disorder. If disorder inequality does not hold for
a small fraction of pairs, how should we
modify our algorithm?

Improving our algorithms. Is it possible to combine
advantages of Ranwalk and Arwalk? Does
there exist a deterministic algorithm with
sublinear search time utilizing small disorder
assumption? E.g., can we use expanders for
derandomization?

16 / 27

Future of Disorder (1/2)

Average disorder. If disorder inequality does not hold for
a small fraction of pairs, how should we
modify our algorithm?

Improving our algorithms. Is it possible to combine
advantages of Ranwalk and Arwalk? Does
there exist a deterministic algorithm with
sublinear search time utilizing small disorder
assumption? E.g., can we use expanders for
derandomization?

16 / 27

Future of Disorder (2/2)

Disorder of random sets. Compute disorder values for
some modelling examples. For example,
consider n random points on d -dimensional
sphere

Lower bounds. Is it possible to prove lower bounds on
preprocessing and query complexities in some
“black-box” model of computation?

17 / 27

Future of Disorder (2/2)

Disorder of random sets. Compute disorder values for
some modelling examples. For example,
consider n random points on d -dimensional
sphere

Lower bounds. Is it possible to prove lower bounds on
preprocessing and query complexities in some
“black-box” model of computation?

17 / 27

Part III

Data Structure Complexity:

SEARCH Class

18 / 27

Inclusions with Preprocessing (1/2)

Input
Family F of subsets of U

Query task
Given a set fnew ⊆ U to decide
whether ∃f ∈ F : fnew ⊆ f

Constraints
Data storage after preprocessing poly(|F|+ |U |)
Time for query processing poly(|U |)

Open problem: is there an algorithm satisfying given
constraints?

19 / 27

Inclusions with Preprocessing (1/2)

Input
Family F of subsets of U

Query task
Given a set fnew ⊆ U to decide
whether ∃f ∈ F : fnew ⊆ f

Constraints
Data storage after preprocessing poly(|F|+ |U |)
Time for query processing poly(|U |)

Open problem: is there an algorithm satisfying given
constraints?

19 / 27

Inclusions with Preprocessing (2/2)

Reformulation in SAT style:

Input
Formula F in DNF with n variables

Query task
Given an assignment x to evaluate F(x)

Constraints
Data storage after preprocessing poly(|F|)
Time for query processing poly(n)

Open problem: is there an algorithm satisfying given
constraints?

20 / 27

Inclusions with Preprocessing (2/2)

Reformulation in SAT style:

Input
Formula F in DNF with n variables

Query task
Given an assignment x to evaluate F(x)

Constraints
Data storage after preprocessing poly(|F|)
Time for query processing poly(n)

Open problem: is there an algorithm satisfying given
constraints?

20 / 27

“NP Analogue” for Search Problems

Every problem in SEARCH class is characterized by
poly-time computable Turing Machine M :

Input
Strings x1, . . . , xn, |xi | = m

Query task
Given string y of length m to answer
whether ∃i : M(xi , y) = yes

21 / 27

Tractable problems in SEARCH

Input
Strings x1, . . . , xn, |xi | = m

Query task
Given string y of length m to answer
whether ∃i : M(xi , y) = yes

Tractable solution
Preprocessing in poly(m, n) space

Query processing in poly(m, log n) time
with RAM access to preprocessed database

Inclusions is in SEARCH. Is it tractable?

22 / 27

Tractable problems in SEARCH

Input
Strings x1, . . . , xn, |xi | = m

Query task
Given string y of length m to answer
whether ∃i : M(xi , y) = yes

Tractable solution
Preprocessing in poly(m, n) space

Query processing in poly(m, log n) time
with RAM access to preprocessed database

Inclusions is in SEARCH. Is it tractable?

22 / 27

Tractable problems in SEARCH

Input
Strings x1, . . . , xn, |xi | = m

Query task
Given string y of length m to answer
whether ∃i : M(xi , y) = yes

Tractable solution
Preprocessing in poly(m, n) space

Query processing in poly(m, log n) time
with RAM access to preprocessed database

Inclusions is in SEARCH. Is it tractable?
22 / 27

Complete problems in SEARCH (1/2)

Program Search problem:

Input
Turing machines P1 . . . , Pn

Query task
Given string y of length m to answer
whether ∃i : Pi(y) = yes after at most m steps

Open problem: is Program Search tractable?

23 / 27

Complete problems in SEARCH (1/2)

Program Search problem:

Input
Turing machines P1 . . . , Pn

Query task
Given string y of length m to answer
whether ∃i : Pi(y) = yes after at most m steps

Open problem: is Program Search tractable?

23 / 27

Complete problems in SEARCH (2/2)

Parallel Run problem:

Input
x1 . . . , xn

Query task
Given poly-time computable P to answer
whether ∃i : P(xi) = yes

Open problem: is Parallel Run tractable?

24 / 27

Complete problems in SEARCH (2/2)

Parallel Run problem:

Input
x1 . . . , xn

Query task
Given poly-time computable P to answer
whether ∃i : P(xi) = yes

Open problem: is Parallel Run tractable?

24 / 27

NN Proofs?

NN-proof system:

Fix some family of basic statements about points in
multidimensional space and some proof system

Can we compute poly(|S |) statements about points
of database Ssuch that for any query q and any real
nearest neighbor pNN ∈ S there is a logarithmic
proof from precomputed statements that indeed
pNN is nearest point is S to q

Do such an NN proof system exist?

25 / 27

NN Proofs?

NN-proof system:

Fix some family of basic statements about points in
multidimensional space and some proof system

Can we compute poly(|S |) statements about points
of database Ssuch that for any query q and any real
nearest neighbor pNN ∈ S there is a logarithmic
proof from precomputed statements that indeed
pNN is nearest point is S to q

Do such an NN proof system exist?

25 / 27

Highlights

Random walk provide logarithmic nearest neighbor
search for bounded disorder sets

SEARCH class: is it tractable?

Do NN proof systems exist?

Thanks for your attention! Questions?

26 / 27

Highlights

Random walk provide logarithmic nearest neighbor
search for bounded disorder sets

SEARCH class: is it tractable?

Do NN proof systems exist?

Thanks for your attention! Questions?

26 / 27

Highlights

Random walk provide logarithmic nearest neighbor
search for bounded disorder sets

SEARCH class: is it tractable?

Do NN proof systems exist?

Thanks for your attention! Questions?

26 / 27

Highlights

Random walk provide logarithmic nearest neighbor
search for bounded disorder sets

SEARCH class: is it tractable?

Do NN proof systems exist?

Thanks for your attention! Questions?

26 / 27

References

The Homepage of Nearest Neighbors and Similarity Search

http://simsearch.yury.name

N. Goyal, Y. Lifshits, H.Schütze
Disorder Inequality: A Combinatorial Approach to Nearest Neighbor Search. Submitted.

http://yury.name/papers/goyal2008disorder.pdf

B. Hoffmann, Y. Lifshits, D.Novotka
Maximal Intersection Queries in Randomized Graph Models. CSR’07.

http://yury.name/papers/hoffmann2007maximal.pdf

P. Zezula, G. Amato, V. Dohnal, M. Batko
Similarity Search: The Metric Space Approach. Springer, 2006.

http://www.nmis.isti.cnr.it/amato/similarity-search-book/

G.R. Hjaltason and H. Samet

Index-driven similarity search in metric spaces. ACM Transactions on Database Systems, 2003

http://www.cs.utexas.edu/~abhinay/ee382v/Project/Papers/ft gateway.cfm.pdf

27 / 27

http://simsearch.yury.name
http://yury.name/papers/goyal2008disorder.pdf
http://yury.name/papers/hoffmann2007maximal.pdf
http://www.nmis.isti.cnr.it/amato/similarity-search-book/
http://www.cs.utexas.edu/~abhinay/ee382v/Project/Papers/ft_gateway.cfm.pdf

	Welcome to nearest neighbors!
	Nearest Neighbors via Random Walks
	Data Structure Complexity: SEARCH Class

