Open Problems TO GO

Yury Lifshits
Caltech
http://yury.name

MIT, 30 November 2007

Open Problems TO GO:

- Short mathematical statement
- No background required
- Motivation (importance) is guaranteed

Open Problems TO GO:

- Short mathematical statement
- No background required
- Motivation (importance) is guaranteed

Today:
Three classic problems
Three problems from YL

1
 Classic Problems

Mean payoff games
Semi-Thue systems
Ulam conjecture (graph reconstruction)

1.1. Rules of mean payoff games

Input for a mean payoff game:

- Weighted directed graph (integer weights)
- Graph does not contain simple cycles with zero sum
- Vertices are divided into disjoint sets A and B
- The starting vertex

Rules of Mean Payoff Games

- Two players: Alice and Bob
- Players move the token over arcs
- Game starts from the starting vertex and it is infinite
- Alice plays from vertices of A, Bob from these of B
- Alice wins if the sum of already passed arcs goes to +infty
- Bob wins if the sum of already passed arcs goes to -infty

Computational Problem

Given a game graph with an A, B decomposition and a starting vertex to determine the winner (and find the winning strategy)

MPG is Very Challenging

MPG Problem belongs to NPnco-NP Direct applications in μ-calculus verification

MPG is Very Challenging

MPG Problem belongs to NPnco-NP Direct applications in μ-calculus verification

Known algorithms:

- Randomized algorithm $\mathcal{O}^{*}\left(2^{\sqrt{n}}\right)$ expected time
- Deterministic algorithm $\mathcal{O}^{*}\left(2^{n}\right)$ time

References

\square Y. Lifshits, D. Pavlov

Potential Theory for Mean Payoff Games
Journal of Mathematical Sciences, 2007
http://yury.name/papers/lifshits2006fast.pdf
M. Jurdziński, M. Paterson, U. Zwick

A deterministic subexponential algorithm for solving parity games
SODA'06
http://www.dcs.warwick.ac.uk/ ${ }^{\sim} m j u / P a p e r s / J P Z 07$-manuscript.pdf

H. Björklund, S. Vorobyov

A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games

Discrete Applied Mathematics, 2007
http://portal.acm.org/citation.cfm?id=1222484

Ulam Conjecture

A vertex-deleted subgraph of a graph G is a subgraph $G-v$ obtained by deleting a vertex v and its incident edges. The deck of a graph G is the family of (unlabelled) vertex-deleted subgraphs of G; these are the cards of the deck. A reconstruction of a graph G is a graph H with the same deck as G. A graph G is reconstructible if every reconstruction of G is isomorphic to G.

Ulam Conjecture

A vertex-deleted subgraph of a graph G is a subgraph $G-v$ obtained by deleting a vertex v and its incident edges. The deck of a graph G is the family of (unlabelled) vertex-deleted subgraphs of G; these are the cards of the deck. A reconstruction of a graph G is a graph H with the same deck as G. A graph G is reconstructible if every reconstruction of G is isomorphic to G.

Conjecture: every graph with at least three vertices is reconstructible

Reference

J.A. Bondy

A graph reconstructor's manual
Surveys in Combinatorics, 1991
http://www.ecp6.jussieu.fr/pageperso/bondy/research/papers/recon.ps

Semi-Thue Systems

Rewriting (α, β) rule allows to rewrite any $u \alpha v$ in $u \beta v$

Semi-Thue Systems

Rewriting (α, β) rule allows to rewrite any $u \alpha v$ in $u \beta v$

Word problem: Given system of rules and two words w_{1} and w_{2} to decide whether one can be obtained from another by a sequence of such rules?

Challenge

There is a system with three rules such that word problem is undecidable

Challenge

There is a system with three rules such that word problem is undecidable

Is word problem decidable or not for systems of one (two) rules?

Reference

Y. Matiyasevich and G. Senizerguez

Decision Problems for Semi-Thue Systems with a Few Rules
LICS'96
http://dept-info.labri.u-bordeaux.fr/~ges/termination.ps

Open Problems from YL

Compressed Arithmetic

Input: Two grammars of size n, m generating binary strings P and Q of the same length

Task: Compute a close-to-minimal grammar generating "bitwise OR between P and Q "

Compressed Arithmetic

Input: Two grammars of size n, m generating binary strings P and Q of the same length

Task: Compute a close-to-minimal grammar generating "bitwise OR between P and Q "

Can we do it in time poly $(n+m+$ output $)$?

References

\square Yury Lifshits
Processing Compressed Texts: A Tractability Border
CPM'07
http://yury.name/papers/lifshits2007processing.pdf

Yury Lifshits and Markus Lohrey
Querying and Embedding Compressed Texts
MFCS'06
http://yury.name/papers/lifshits2006querying.pdf
圊 Patrick Cégielski, Irène Guessarian, Yury Lifshits and Yuri Matiyasevich
Window Subsequence Problems for Compressed Texts
CSR'06
http://yury.name/papers/cegielski2006window.pdf

Impossibility of Preprocessing

Input

Circuits $C_{1} \ldots, C_{n}$
of size poly (m) with input size m
Query task
Given string y of length m to answer whether $\exists i: C_{i}(y)=y e s$

Impossibility of Preprocessing

Input
Circuits $C_{1} \ldots, C_{n}$
of size poly (m) with input size m
Query task
Given string y of length m to answer whether $\exists i: C_{i}(y)=y e s$
Constraints:
poly (n, m) preprocessing poly $(\log n, m)$ search

Impossibility of Preprocessing

Input
Circuits $C_{1} \ldots, C_{n}$
of size poly (m) with input size m
Query task
Given string y of length m to answer whether $\exists i: C_{i}(y)=y e s$
Constraints:
poly (n, m) preprocessing poly $(\log n, m)$ search

Open problem: Is there a solution within given constraints?

Dual Problem

Input

Strings $x_{1} \ldots, x_{n}$ of length m,

Query task

Given circuit C of size polym with input length m to answer whether $\exists i: C\left(x_{i}\right)=y e s$

Dual Problem

Input

Strings $x_{1} \ldots, x_{n}$ of length m,

Query task

Given circuit C of size polym with input length m to answer whether $\exists i: C\left(x_{i}\right)=y e s$

Constraints:
poly (n, m) preprocessing poly $(\log n, m)$ search

Dual Problem

Input

Strings $x_{1} \ldots, x_{n}$ of length m,
Query task
Given circuit C of size polym with input length m to answer whether $\exists i: C\left(x_{i}\right)=y e s$

Constraints:
poly (n, m) preprocessing poly $(\log n, m)$ search

Open problem: Is there a solution within given constraints?

Reference

Yury Lifshits
Algorithms for Nearest Neighbors: Classic Ideas, New Ideas
Talk at University of Toronto
MP3 recording
http://yury.name/talks/toronto-talk.pdf

Positive Subgraph

Input
 $n \times n$ bipartite graph (pretty sparse) Weights on edges

Positive Subgraph

Input

$n \times n$ bipartite graph (pretty sparse) Weights on edges

Task
Find a $k \times k$ subgraph with maximal average edge weight

Positive Subgraph

Input

$n \times n$ bipartite graph (pretty sparse) Weights on edges

Task
Find a $k \times k$ subgraph with maximal average edge weight

Polynomial approximate algorithm?

Reference

三
Y. Lifshits and D. Nowotka

Estimation of the click volume by large scale regression analysis
CSR'07
http://yury.name/papers/lifshits2007click.pdf
嘈 http://www.netflixprize.com

Voting

Which problem you like the most?

- Mean Payoff Games
- Ulam Conjecture
- Semi-Thue Systems
- Compressed Arithmetics
- Impossibility of Preprocessing
- Positive Subgraph
http://yury.name

Thanks for your attention! Questions?

