# New Algorithms on Compressed Texts

#### Yury Lifshits

Steklov Institute of Mathematics, St.Petersburg, Russia yura@logic.pdmi.ras.ru

> Tallinn 20/03/2006

Fully Compressed Pattern Matching (FCPM)

**INPUT:** Compressed strings P and T**OUTPUT:** Yes/No (whether P is a substring in T?)

#### Example

| Text:    | abaababaabaab | We know only              |
|----------|---------------|---------------------------|
|          |               | compressed representation |
| Pattern: | baba          | of <i>P</i> and <i>T</i>  |

Fully Compressed Pattern Matching (FCPM)

**INPUT:** Compressed strings P and T**OUTPUT:** Yes/No (whether P is a substring in T?)

#### Example

| Text:    | abaa <mark>baba</mark> abaab | We know only              |
|----------|------------------------------|---------------------------|
|          |                              | compressed representation |
| Pattern: | baba                         | of <i>P</i> and <i>T</i>  |

## Outline of the Talk

Processing Compressed Texts: Bird's Eye View

- Fully Compressed Pattern Matching: Idea of a New Algorithm
  Idea of a new algorithm
  - ★ Detailed description
- Over Algorithms and Some Negative Results
- 4 Conclusions and Open Problems

## Processing Compressed Text

### **Central idea**

If some text is highly compressible, then it contains long identical segments and therefore it is likely that we can solve some problems more efficiently than in general case

#### Reasons for algorithms on compressed texts:

• Potentially faster than "unpack-and-solve"

#### Reasons for algorithms on compressed texts:

- Potentially faster than "unpack-and-solve"
- Lower memory requirements

#### Reasons for algorithms on compressed texts:

- Potentially faster than "unpack-and-solve"
- Lower memory requirements
- Theoretical applications: word equations in PSPACE, pattern matching in message sequence charts

#### Reasons for algorithms on compressed texts:

- Potentially faster than "unpack-and-solve"
- Lower memory requirements
- Theoretical applications: word equations in PSPACE, pattern matching in message sequence charts

### Real data with high level of repetitions:

Genomes

#### Reasons for algorithms on compressed texts:

- Potentially faster than "unpack-and-solve"
- Lower memory requirements
- Theoretical applications: word equations in PSPACE, pattern matching in message sequence charts

### Real data with high level of repetitions:

- Genomes
- Internet logs, any statistical data

#### Reasons for algorithms on compressed texts:

- Potentially faster than "unpack-and-solve"
- Lower memory requirements
- Theoretical applications: word equations in PSPACE, pattern matching in message sequence charts

### Real data with high level of repetitions:

- Genomes
- Internet logs, any statistical data
- Automatically generated texts

# Straight-Line Programs

### Straight-line program (SLP) is a

Context-free grammar generating **exactly one** string Two types of productions:  $X_i \rightarrow a$  and  $X_i \rightarrow X_p X_q$ 

# Straight-Line Programs

**Straight-line program** (SLP) is a Context-free grammar generating **exactly one** string Two types of productions:  $X_i \rightarrow a$  and  $X_i \rightarrow X_p X_q$ 

Most of practically used compression algorithms (Lempel-Ziv family, run-length encoding...) can be efficiently translated to SLP

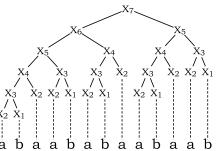
# Straight-Line Programs

**Straight-line program** (SLP) is a Context-free grammar generating **exactly one** string Two types of productions:  $X_i \rightarrow a$  and  $X_i \rightarrow X_p X_q$ 

Most of practically used compression algorithms (Lempel-Ziv family, run-length encoding...) can be efficiently translated to SLP

#### Example

#### abaababaabaab



## Important Related Results

Algorithms on compressed texts:

- Amir et al.'94: Compressed Pattern Matching
- Gasieniec et al.'96: Regular Language Membership

## Important Related Results

Algorithms on compressed texts:

- Amir et al.'94: Compressed Pattern Matching
- Gasieniec et al.'96: Regular Language Membership

The following problems are hard for compressed texts:

- Lohrey'04: Context-Free Language Membership
- Berman et al.'02: Two-dimensional Compressed Pattern Matching



Fully Compressed Pattern Matching (FCPM)

**INPUT:** SLP-compression of *P* and of *T* **OUTPUT:** Yes/No (whether *P* is a substring in *T*?)

Fully Compressed Pattern Matching (FCPM)

**INPUT:** SLP-compression of *P* and of *T* **OUTPUT:** Yes/No (whether *P* is a substring in *T*?)

Let m and n be the sizes of straight-line programs generating correspondingly P and T

Gasieniec et al.'96: $O((n+m)^5 \log^3 |T|)$  algorithmMiyazaki et al.'97: $O(n^2m^2)$  algorithm

Fully Compressed Pattern Matching (FCPM)

**INPUT:** SLP-compression of *P* and of *T* **OUTPUT:** Yes/No (whether *P* is a substring in *T*?)

Let m and n be the sizes of straight-line programs generating correspondingly P and T

Gasieniec et al.'96: $O((n+m)^5 \log^3 |T|)$  algorithmMiyazaki et al.'97: $O(n^2m^2)$  algorithm

**Lifshits'06:**  $O(n^2m)$  algorithm

## Basic Lemma

### Notation:

 $Position = place \ between \ neighbor \ characters.$ 

 $Occurrence = starting \ position \ of \ a \ substring$ 

## Basic Lemma

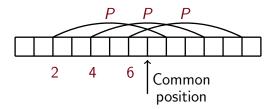
### Notation:

Position = place between neighbor characters.

Occurrence = starting position of a substring

#### Lemma

All occurrences of P in T touching any given position form a single arithmetical progression



### **AP-table**

Let  $P_1, \ldots, P_m$  and  $T_1, \ldots, T_n$  be the compression symbols.

### **AP-table**

Let  $P_1, \ldots, P_m$  and  $T_1, \ldots, T_n$  be the compression symbols.

A **cut** is a merging position for  $X_i = X_r X_s$ .

## **AP-table**

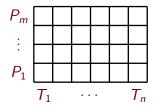
Let  $P_1, \ldots, P_m$  and  $T_1, \ldots, T_n$  be the compression symbols.

A **cut** is a merging position for  $X_i = X_r X_s$ .

#### **AP-table:**

For every  $1 \le i \le m, 1 \le j \le n$ let AP[i, j] be a code of ar.pr. of occurrences of  $P_i$  in  $T_j$ that touches the cut of  $T_j$ 





# Two Claims

**Claim 1:** We can solve all variants of FCPM from AP-table in linear time:

- Find the first occurrence
- Count the number of all occurrences
- Check whether there is an occurrence from the given position
- Compute a "compressed" representation of all occurrences

# Two Claims

**Claim 1:** We can solve all variants of FCPM from AP-table in linear time:

- Find the first occurrence
- Count the number of all occurrences
- Check whether there is an occurrence from the given position
- Compute a "compressed" representation of all occurrences

**Claim 2:** We can compute the whole AP-table by dynamic programming method using O(n) time for every element

## Getting the answer

#### AP-table:

for every  $1 \le i \le m, 1 \le j \le n$  let AP[i, j] be a code of ar.pr. of occurrences of  $P_i$  in  $T_j$ that touches the cut of  $T_j$ 

## Getting the answer

#### AP-table:

for every  $1 \le i \le m, 1 \le j \le n$  let AP[i, j] be a code of ar.pr. of occurrences of  $P_i$  in  $T_j$ that touches the cut of  $T_j$ 

How to check whether P occurs in T from AP-table?

# Getting the answer

#### AP-table:

for every  $1 \le i \le m, 1 \le j \le n$  let AP[i, j] be a code of ar.pr. of occurrences of  $P_i$  in  $T_j$ that touches the cut of  $T_j$ 

How to check whether P occurs in T from AP-table?

#### Answer:

*P* occurs in *T* iff there is *j* such that AP[m, j] is nonempty

# Computing AP-table

#### Order of computation:

 $\begin{array}{l} \mbox{from $j=1$ to $n$ do} \\ \mbox{from $i=1$ to $m$ do} \\ \mbox{compute $AP[i,j]$} \end{array}$ 

# Computing AP-table

#### Order of computation:

 $\begin{array}{l} \mbox{from $j=1$ to $n$ do} \\ \mbox{from $i=1$ to $m$ do} \\ \mbox{compute $AP[i,j]$} \end{array}$ 

### **Basis:** one-letter $P_i$ or one-letter $T_j$ **Induction step:** $P_i$ and $T_j$ are composite texts

# Computing AP-table

#### Order of computation:

 $\begin{array}{l} \mbox{from $j=1$ to $n$ do} \\ \mbox{from $i=1$ to $m$ do} \\ \mbox{compute $AP[i,j]$} \end{array}$ 

### **Basis:** one-letter $P_i$ or one-letter $T_j$ **Induction step:** $P_i$ and $T_j$ are composite texts

We design a special auxiliary procedure that extracts useful information from already computed part of AP-table for computing a new element AP[i, j]

# Auxiliary Procedure: Local PM

*LocalPM*(*i*, *j*, [ $\alpha$ ,  $\beta$ ]) returns occurrences of  $P_i$  in  $T_j$  inside the interval [ $\alpha$ ,  $\beta$ ]

# Auxiliary Procedure: Local PM

*LocalPM*(*i*, *j*, [ $\alpha$ ,  $\beta$ ]) returns occurrences of *P<sub>i</sub>* in *T<sub>j</sub>* inside the interval [ $\alpha$ ,  $\beta$ ]

#### Important properties:

- Local PM uses values AP[i,k] for  $1 \le k \le j$
- It is defined only when  $|\beta \alpha| \leq 3|P_i|$
- It works in time O(n)
- The output of Local PM is a pair of ar.pr.

# Auxiliary Procedure: Local PM

*LocalPM*(*i*, *j*, [ $\alpha$ ,  $\beta$ ]) returns occurrences of  $P_i$  in  $T_j$  inside the interval [ $\alpha$ ,  $\beta$ ]

#### Important properties:

- Local PM uses values AP[i,k] for  $1 \le k \le j$
- It is defined only when  $|\beta \alpha| \leq 3|P_i|$
- It works in time O(n)
- The output of Local PM is a pair of ar.pr.

**Proposition:** answer of Local PM indeed could be always represented by pair of ar.pr.

## Computing the next element

Let  $P_i = P_r P_s$ , and let  $|P_r| \ge |P_s|$ 

Let  $P_i = P_r P_s$ , and let  $|P_r| \ge |P_s|$ 

#### Naive approach

• Compute all occurrences of  $P_r$  around cut of  $T_j$ 

Let  $P_i = P_r P_s$ , and let  $|P_r| \ge |P_s|$ 

#### Naive approach

- Compute all occurrences of  $P_r$  around cut of  $T_j$
- 2 Compute all occurrences of  $P_s$  around cut of  $T_j$

Let  $P_i = P_r P_s$ , and let  $|P_r| \ge |P_s|$ 

#### Naive approach

- Compute all occurrences of  $P_r$  around cut of  $T_j$
- 2 Compute all occurrences of  $P_s$  around cut of  $T_j$
- Shift the latter by  $|P_r|$  and intersect

Let  $P_i = P_r P_s$ , and let  $|P_r| \ge |P_s|$ 

#### Naive approach

- Compute all occurrences of  $P_r$  around cut of  $T_j$
- 2 Compute all occurrences of  $P_s$  around cut of  $T_j$
- Shift the latter by  $|P_r|$  and intersect

Let  $P_i = P_r P_s$ , and let  $|P_r| \ge |P_s|$ 

#### Naive approach

- Compute all occurrences of  $P_r$  around cut of  $T_j$
- 2 Compute all occurrences of  $P_s$  around cut of  $T_j$
- Shift the latter by  $|P_r|$  and intersect

Remark: we can do only step 1 by Local PM

Let  $P_i = P_r P_s$ , and let  $|P_r| \ge |P_s|$ 

#### Naive approach

- Compute all occurrences of  $P_r$  around cut of  $T_j$
- 2 Compute all occurrences of  $P_s$  around cut of  $T_j$
- Shift the latter by  $|P_r|$  and intersect

**Remark:** we can do only step 1 by Local PM **Idea:** not all occurrences of  $P_s$  but only these that are starting at the ends of  $P_r$  ones.

Some blackboard explanation...

• Take the first ar.pr of  $P_r$  occurrences

- Take the first ar.pr of  $P_r$  occurrences
- ② Divide all ends to "continental" and "seaside"

- Take the first ar.pr of  $P_r$  occurrences
- ② Divide all ends to "continental" and "seaside"
- Oheck one continental

- Take the first ar.pr of  $P_r$  occurrences
- ② Divide all ends to "continental" and "seaside"
- Check one continental
- Oneck all seaside (by Local PM)

- Take the first ar.pr of  $P_r$  occurrences
- ② Divide all ends to "continental" and "seaside"
- Check one continental
- Oneck all seaside (by Local PM)
- The same for the second ar.pr.

- Take the first ar.pr of  $P_r$  occurrences
- ② Divide all ends to "continental" and "seaside"
- Check one continental
- Oneck all seaside (by Local PM)
- The same for the second ar.pr.

Some blackboard explanation...

- Take the first ar.pr of  $P_r$  occurrences
- ② Divide all ends to "continental" and "seaside"
- Oheck one continental
- Oheck all seaside (by Local PM)
- The same for the second ar.pr.

#### **Total complexity:**

- Local PM for  $P_r$ + 2 Local PM for  $P_s$
- + 2 point checks for  $P_s$

O(n)

Some blackboard explanation...

- Take the first ar.pr of  $P_r$  occurrences
- ② Divide all ends to "continental" and "seaside"
- Oheck one continental
- Oheck all seaside (by Local PM)
- The same for the second ar.pr.

#### **Total complexity:**

- Local PM for  $P_r$ + 2 Local PM for  $P_s$
- + 2 point checks for  $P_s$

O(n)

#### We are done!

Some blackboard explanation...

- Take the first ar.pr of  $P_r$  occurrences
- ② Divide all ends to "continental" and "seaside"
- Oheck one continental
- Oheck all seaside (by Local PM)
- The same for the second ar.pr.

#### Total complexity:

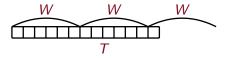
- Local PM for  $P_r$
- + 2 Local PM for  $P_s$
- + 2 point checks for  $P_s$

O(n)

We are done! (Modulo basic computation of AP-table and realization of Local PM)

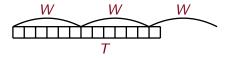
#### **Covers and Periods**

A **period** of a string T is a string W such that T is a prefix of  $W^k$  for some integer k

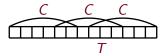


#### Covers and Periods

A **period** of a string T is a string W such that T is a prefix of  $W^k$  for some integer k

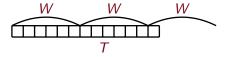


A **cover** of a string T is a string C such that any character in T is covered by some occurrence of C in T

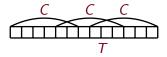


#### Covers and Periods

A **period** of a string T is a string W such that T is a prefix of  $W^k$  for some integer k



A **cover** of a string T is a string C such that any character in T is covered by some occurrence of C in T



**Compressed Periods/Covers:** given a compressed string T, to find the shortest period/cover and compute a "compressed" representation of all periods/covers

Yury Lifshits (Steklov Inst. of Math)

**Compressed Window Subsequence:** given a pattern P, a compressed string T, and an integer k, to determine whether P is a **scattered** subsequence in some window of length k in the text T

- T: abaababaabaab
- P: babab
- *k* : 6

**Compressed Window Subsequence:** given a pattern P, a compressed string T, and an integer k, to determine whether P is a **scattered** subsequence in some window of length k in the text T

#### Example

T: abaa|**babaab**|aab P: babab k: 6

**Compressed Window Subsequence:** given a pattern P, a compressed string T, and an integer k, to determine whether P is a **scattered** subsequence in some window of length k in the text T

#### Example

T: abaa|**babaab**|aab<math display="block">P: bababk: 6

**Fully Compressed Subsequence Problem:** given compressed strings P and T, to determine whether P is a **scattered** subsequence in T

- T: abaababaabaab
- P: baabaabaab

**Compressed Window Subsequence:** given a pattern P, a compressed string T, and an integer k, to determine whether P is a **scattered** subsequence in some window of length k in the text T

#### Example

T: abaa|**babaab**|aab P: babab k: 6

**Fully Compressed Subsequence Problem:** given compressed strings P and T, to determine whether P is a **scattered** subsequence in T

- T: a**baaba**ba**abaab**
- P: baabaabaab

**Compressed Hamming Distance:** given compressed strings  $T_1$  and  $T_2$ , to compute Hamming distance (the number of characters which differ) between them

- $T_1$ : abaababaabaab
- T<sub>2</sub>: baabababababab

**Compressed Hamming Distance:** given compressed strings  $T_1$  and  $T_2$ , to compute Hamming distance (the number of characters which differ) between them

#### Example

 $T_1$ :**abaababaabaabaab** $HD(T_1, T_2) = 7$  $T_2$ :**baabababababaab** 

**Compressed Hamming Distance:** given compressed strings  $T_1$  and  $T_2$ , to compute Hamming distance (the number of characters which differ) between them

#### Example

 $T_1$ :**abaababaabaabaabaab** $HD(T_1, T_2) = 7$  $T_2$ :**baababababaab**abaab

**Compressed LCS:** given compressed strings  $T_1$  and  $T_2$ , to compute the length of the longest common subsequence

- T<sub>1</sub>: abaababaabaab
- T<sub>2</sub>: baabababababab

**Compressed Hamming Distance:** given compressed strings  $T_1$  and  $T_2$ , to compute Hamming distance (the number of characters which differ) between them

#### Example

 $T_1$ :**abaababaabaabaabaab** $HD(T_1, T_2) = 7$  $T_2$ :**baababababaab**abaab

**Compressed LCS:** given compressed strings  $T_1$  and  $T_2$ , to compute the length of the longest common subsequence

- $T_1$ : abaababaabaab  $LCS(T_1,T_2) = 12$

A **fingerprint** is a set of used characters of any substring of T. A **fingerprint table** is the set of all fingerprints.

Example

Text: abacaba

A **fingerprint** is a set of used characters of any substring of T. A **fingerprint table** is the set of all fingerprints.

Example

Text: abacaba Fingerprint Table:  $\emptyset{a}{b}{c}{a,b}{a,c}{a,b,c}$  A fingerprint is a set of used characters of any substring of T. A fingerprint table is the set of all fingerprints.

Example

**Text:** abacaba **Fingerprint Table:**  $\emptyset{a}{b}{c}{a,b}{a,c}{a,b,c}$ 

**Compressed Fingerprint Table:** given a compressed string T, to compute a fingerprint table

## **Check Your Intuition**

#### Which of the following problems have polynomial algorithms?

- Periods
- 2 Longest Common Subsequence
- Hamming distance
- Overs
- Fingerprint Table
- Ompressed Window Subsequence
- Fully Compressed Subsequence Problem

## **Check Your Intuition**

#### Which of the following problems have polynomial algorithms?

- Periods
- 2 Longest Common Subsequence
- Hamming distance
- Covers
- **5** Fingerprint Table
- **6** Compressed Window Subsequence
- Fully Compressed Subsequence Problem

Answer: **red-on-grey** problems have polynomial algorithms, black ones are NP-hard

#### Main points:

• New field: algorithms working on compressed objects (including strings) without unpacking them

#### Main points:

- New field: algorithms working on compressed objects (including strings) without unpacking them
- New algorithm: fully compressed pattern matching in cubic time

#### Main points:

- New field: algorithms working on compressed objects (including strings) without unpacking them
- New algorithm: fully compressed pattern matching in cubic time
- More algorithms: covers, periods, window subsequence, fingerprint table. But LCS, Hamming distance, FCSP are NP-hard.

#### Main points:

- New field: algorithms working on compressed objects (including strings) without unpacking them
- New algorithm: fully compressed pattern matching in cubic time
- More algorithms: covers, periods, window subsequence, fingerprint table. But LCS, Hamming distance, FCSP are NP-hard.

#### **Open Problems**

- To construct a  $O(nm \log |T|)$  algorithm for Fully Compressed Pattern Matching
- To construct O(nm) algorithms for edit distance, where *n* is the length of  $T_1$  and *m* is the **compressed size** of  $T_2$

### Last Slide

Contact: Yury Lifshits

Email: yura@logic.pdmi.ras.ru Home page: http://logic.pdmi.ras.ru/~yura/



Yu. Lifshits

Solving Classical String Problems on Compressed Texts. *Draft*, 2006.



Yu. Lifshits and M. Lohrey Querying and Embedding Compressed Texts. to be submitted, 2006.



P. Cégielski, I. Guessarian, Yu. Lifshits and Yu. Matiyasevich Window Subsequence Problems for Compressed Texts. accepted to "Computer Science in Russia", 2006.

## Last Slide

Contact: Yury Lifshits

Email: yura@logic.pdmi.ras.ru Home page: http://logic.pdmi.ras.ru/~yura/



Yu. Lifshits Solving Classical String Problems on Compressed Texts. *Draft*, 2006.

Yu. Lifshits and M. Lohrey Querying and Embedding Compressed Texts. to be submitted, 2006.



P. Cégielski, I. Guessarian, Yu. Lifshits and Yu. Matiyasevich Window Subsequence Problems for Compressed Texts. accepted to "Computer Science in Russia", 2006.

# Thanks for attention.

## Last Slide

Contact: Yury Lifshits Email: yura@logic.pdmi.ras.ru Home page: http://logic.pdmi.ras.ru/~yura/



Yu. Lifshits Solving Classical String Problems on Compressed Texts. *Draft*, 2006.



Yu. Lifshits and M. Lohrey Querying and Embedding Compressed Texts. to be submitted, 2006.



P. Cégielski, I. Guessarian, Yu. Lifshits and Yu. Matiyasevich Window Subsequence Problems for Compressed Texts. accepted to "Computer Science in Russia", 2006.

# Thanks for attention. **Questions?**